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Starting from a functyonal equation of two variables containing a parameter /3 , the information funotion of kind f l  
given have been obtained. The paper contains a charaoterization and properties of this measure. Also the study has been 
extended to the information improvement of the prediction probability distribution (ql, gat. . Q, ) revised as (Y,, .r,. . rn ) 
on the baais of realization (p,, p,. . . . pn ). 

?a 

Let P = ( ply pA, . . , pn ) pi 3 0, B ~i = 1 be a probability distribution of a set of la events 
i - 1  

on the basis of an kxperiment E whose true (prediction) probability distribution is Q = (ql, q2,. . . ., qn), 
A 

qd >, 0, B qi = 1, then Kullback'sl measure of information that P provides about Q is 
in. 1 

n 
Again let R = ( rl, r2, . . , r, ), ri 3; 0, Z ri = 1 be a revised probability distribution of a 

i i l  

Z n 

original probability distribution Q = (q,, q,, . ., q,), qi 2 0' Z1 qi = 1 on the basis of realization 
i = l  

n 
P = (pi, pa,. . , %), pi ?li 0, . Z pi = 1 ob tsined from the experiment E. Then the information 

2 = 1  

In  this paper we shall take the functional equation in two and three variables, involving a parameter 
/3 which under suitable boundary conditions would give the new measures named as the 'iriormation' 
and 'information-improvement' of kind /33. The paper contains the characterimtions of these new 
measures and some of their properties. 

Sharma and Autara have studied earlier596 some other generalizations of (1) and (2) differently. 

C H A R A C T E R I Z A T I O N  OF I N F O R M A T I O N  O F  K I N D  f l  
We shall first take generalization of (1). 

Let the information of kind /3 of P with respect to Q denoted by Ln be taken to satisfy the followiq 
postulates : 



where Pa = PI + +p Q2 = PI + qa, PZJ Qa > 0. 

Postulate II 

is a symmetric function . - such that for any permutation of there is the same 

permutation of q's. I 

Postdate III 

, L2 0 
Note I : The postulate I is a recursivity of information of kind /3 6nd i t  is a relation corresponding to 

additivity. Also postulate I11 can be considered as a normalization property and here it includes the pars- 
meter j3 for the quantities were 0 < p < 1. 

Note 2 : If we take 

then with the help of postulates Land 11, L. (n i 3) can be expressed in terns of the single function 
f (x ,  Y). 

The postulate I a t  once gives the elegant form 
. ,  

(4) 

where pi = PI + Pg d- . . + PC, 81 = ql + qa + :. . . + qi, i = 1,2, . . . ., n with P. = Q. = 1. 

when recursivity and symmetry of information of kind B are applied' to La, we obtain the functional 
equation 

f (x* ~f + (1  - x)B.(l- y)l--8 f [%/(l- x), v / ( l -  y) 1 ,(5) 
= f (W V )  f ( 1  - u)p ( 1  - v)l-b f [ $ / ( I -  u), y/(1- a) 1, 
forx,~,u,veEO, 1 ] w i t h x f  u, y +  va[O, 11. 

If We put Y = 2 and v u and take f (x, x) = f (x) ,  (6) reduces to Kendall'ss functional equation 
of information function. 

We now adopt the following definition. 

DBfintbn : A real-valued solution f (8, y)  of (5)  defined on [0, 11 x [O, 11 is said to be an information 
function of kind j? ~-(O,d),~if it satisfies the followhg boundary oonditions 

" ,  . 
f (0, 0 )  =f (1, I),  (6) 

f (pl'fi. 1) = f (1 - /?'Is, 0) = 1, (7) 
Again iff (x, y) is an information function of kind j3 then the inforqtion of kind p that P provides 
about Q is given by (4). 

is shown below that? bJ Y )  = f (1 - 3, 1 - y) and f (0, 0 )  = 0.' Thus (7) fo l lo~s  by putting. 
x = j3118 and y = 1 in (5). 

\ 

We now give chwc8erkations of information function hnd information of kind B(+l )  in theorema 
I and 11 respectiyeJ$r., , ; , 

46 
\ 



80w1: Bhnotional Equation in Information Theory 

Theorem I 
The only solution f  ( x ,  y) of (5)  satisfying the additional conditions (6), and (7) is given by 

f  ( x , y )  = [ I - x b y l - B - ( 1 - x ) B  (1-y)l-B](1-/3)-1, (8) 
for (a ,  y) [ O , 1 ]  X [ O , ' l ]  +" ( O , l ) U ( 1 , 0 ) ;  P ( 0¶1 ) ,  

(We ehall take OCI G= 0 (a '# 0). 

Pi.oof: Taking a = y = 0 in (b) ,  f  (1, 0) = 0 and hence from (6), we get 

f ( l , l ) = f ( O , O ) = O .  (9) 

Now replacing u, v in (6 )  by 1 - x and 1 - y respectively and applying'(9x we have 
I 

f (x, y) = f ( 1  - 3, 1 - y) for s, y E E0,ll. (10) 

Let pi,  p2, ql: qa be four arbitrary numbers belonging to  (0 , l ) .  Setting pl = 1 -x, pa = u(1- r)-1, 
q1 = 1 -y, q2 = v(1- 9)-l in (6)  and using (lo), we have . 

b f (PI ,  41) p l f i q l l - B f  (pa9 q2) = f  ( P I P ~ , Q ~ P ~ )  + (1-p1fi)B (1-qlqa)I-B 
. f f l - P 1 /  ( l - - P l  P2), l-q1 1 (l-qlq*)) (11) 

for ply 9.1 e [O, 11, p2, q2 e [O, 1 )  such that p1p2 # 1 and ql q2 # 1. 
Take the function 

We shall show that F(pl ,  p2 ; q1, q2) is symmetric, i.e., 

Fdpl,  P2 o, Y l ,  qd = (P2, Pl ; qa, 81). (13) 
From (11) and (12) we have 

Setting pl* = ( 1  - pl )  ( 1  - pl p2)-l, ql* = (1 - q,) ( 1  - ql q2)-ly we have 

A ( P i ,  Pz ; Pa) =f ( 1-PI !  PIP^), l - q ~  / (1-q1q2) ) f (1-1)1 ( l - f i p 2 )  )B ' 
( l -q ,  / (l--q,q2) ) I - B f  (132, q2) 

= f (Pl*, ql*) f Pl*B ql*(l-fl' f ( ~ ) z t  q2) 

using (10) and (11) we get 

So i t  follows from (12) that 

Next putting p2 = BllS , q2 = 1 or p, -- 1 - /3118 , q, = 0 in (13) and using the dehition of 
F ( P I ,  % ; ql, q2) and (7) we get 

0 = f  (PI ,  41) + [ P I @  9ll-B + ( l -pl)B ( l - -ql) l - f i  ] - 1- P f  (P I ,  q1). 
I 

From this it follows that 

,f ( P I ,  p i )  = [ 1 --pip qll-B - ( 1  --p1)B ( 1  - pl)l-B ] ( 1  - P)- l ,  for all pl, q1 E (0 , ' l )  
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Since f (0, 0) = f (1, 1) = 0, the result is true when p1 = q1 = 0 or fi = q1 = 1. 
I ,. 

Theorem I1 \ - 

Let P = (ply pa, . . . . A). Q = (q,, q,,. . . ., qn) be two oomplete probability distributions 
then the information of kind ,9 derived from the information function of hind @ is in general given 
by (4) and if the informstion function f (x, 9)  of kind ,9 is obtained in theorem I, then the corresponding 
information of kind /3 is 

A 
B 
Ha (P:  Q )  = [ 1- 2 gi8 pi1--8 ] (1--8),-l ,9 z 1, B z 0. (15) 

i - 1  

Pro@: Substituting the expression for f (x, y) from (8) in (4) we have 

clearly, it is (16). 

P R O P E R T I E S  O F  I N F O R M A T I Q N  O F  K I N D  f l  
Several properties like non-negativity, symmetry, null-information and expansibility9 can be easily 

derived for H,, (P ; Q). 

We mention below some other properties for HP, (P ; Q). 
Strongly Additive property : 

where Pi' = (PIS, P@Y 3 pd), Qil = (qljy gady . . . , q d  ), 
I 

m m 

h* P,' =.(PI PIX, 131 A1, >, PI %I) etc. and 2 pi'= 1.2 qfi= 1 
j= 1 j= 1 

for all i = 1,2, . . . n. 

An interesting special case of (16) is given below : 

B 
& ( ~ g i : )  = HB.(:) +HP,,,({:) +(@--I) B,B (i) H: ( c )  (17) 



SOW : Functional Equation in Information Theory 
I 

where P = (PI? %, . W e .  %), Q = (q1, q2, .... qn), P' = (PI, Pa, ..., P,), 

When /3 -+ 1, the last term in (17) vanishes and we have the well known additivity pmpe~ty of KulEbmkYo 
information. 

m e n  /3 # 1 we have 

with pl 3- A, ql + qa > 0. 

bii 

In this section we shall study a generalization of (2). Let the information improvement of kind of 
the probability distributions P, Q and R be denoted by U,, be taken to satisfy the following postulates 



$31, %7 % 
is a symmetric function. guch that for any permutation of p's there are 

the same pormutations of q's and r's. 

Postzchte vz 

u.(!! lip) = 1 ( O < / I <  1). 

Note ZV : The postulate IV is a recursivity of information improvement of kind /I it and it  is a relation 
oorresponding to additiviCy. Also postulate VI can be considered as a normalization property and here it 
includes the parameter /I for the quantities where 0 < /I < 1. 

Note V : If we take 

x y l - x  
f (a, y, 2)  .- Ua (18) 

then with the help of postulates IV and V, Un (n > 3) 'can be expressed in terms of the single function 
f ( c  Y, 2). 

The postulate IV, once gives the elegant form 

whe reP i=p l+%+ . .* + pi7 Qi=ql+qs+ ... f q;., R i = r l f  r ,f  ... f r i ;  

i 3 1,2,  ..., nwith P n k  Qn= Rn 1. 

When recursivity and symmetry of information improvement of kind fl  are applied to U3, we 
obtain the functional equation 

f (5, y, z) + (1-x)  ( 1 - y ) l d B  (1-z)B+1 f ( ~ 1 1 - x ,  911-y, wl l -Z)  - f (u ,  v, w )  + (1-U) ( l - v ) l - - + B  (1-w)B-1 f ( x / ~ - u , ~ /  1-V, 611-w) (20) 
for a,  y, 2, u, v, w e [O, 11 with x 4- zt, 9 4- a, z + w e [O, 11. 
If we put z = x and w = u and take f ( x ,  y, z ) = f [x, y),  (20) reduc-js to (5) ,  the functional equation for in- 
formation futkctioa of kind 13 and again if we put z = y = x and w = v = u and take f (s, x,  s) t f (x ) ,  
(20) reduces to Kendall'ss functional equation for information function. 

We now adopt the following definition,' 



$ONI : E'un~tioml B!qmatian in brnis t ion Theory 

DeJErJition : A real-valued solution f (a, y, z )  of (20) defined on [0, 1T x [O, 11 x [O, 11 is said to be an 
informtion improvement function of kind p E (0, l) ,  if it satisfies the following boundary conditions 

f (O,O, 0) = f ( l a  1, 11% (2 1) 

f (8 ,  1, 1) = f (1 -B, 0 ,  0 )  = 1, . (22) 

for a given fl such that 0 6 ,B < 1. 

Again i f f  (s, y, z )  is an information improvement function of kind (#  1) then the information im- 
provement of kind p ( + 1) is given by (19). 

Note V I  : It is shown below t h k  f (x,y,z) = f (1  - x, 1 - x, 1 - z)  and that f (o,o,o) = o. Now 
(22) follows by putting x = p, y = I, s = 1 in (20). 

We now give characterizations of information improvement function and information improvement of 
kind p (# 1) in theorems 111 and IV  respectively. \. 

rl 

THEOR&lU I11 The only solution f (z, y, z) of (20) satisfying the additional conditions (21) and (22) 
ia given by - 

[ 1-8 fl-1 1-fl 8-1 
f ( x , y , s ) =  1-xy -s - ( 1 - 4  (1-Y) ( 1 -:4 (23) 

for (x,y,s) E 10, 11 X [0 11 X [0, 11 + (x, 1,O) U (x,O,O) U (5~,0,1) U (3,l 1) (We shall: take ' 

(la= 0 (a # d)). 

Proof: Taking x = y = z = 0 in (20) , (f O,0,0,) = 0 and hence from (21) we get 

f (1, 1, l,)=f (0, 0, 0,)=0. (24) 

. Now replacing zc, a, w, in (20) by 1 - x, 1 - y, and 1 - z respectively and applying (24) we have 

f ( X , Y , Z )  = f (1-3, 1-YY 1-2) (25) 
for a, y, s E [0, 11. 

i 

Let pl, pa, ql, q,', rl, r2, be six arbitrary numbers from the open interval (0, 1). Setting ply = 1 - $, 
% =: u (1  - X)-1, ql = 1 - y, q, = v(1- y)- 7, = 1 - s, r2 = w(l  -z)-l in (20) and using (26), we haye 

1-8 8-1 1-ls el 

f ql* ' 1 )  f fi B 71 f ( ~ 2 ,  q2, ' 2 )  f ( 1  -PI ~ 2 )  (1  - ql L) (I - rl 7%) 

f (1  - PIIU -PI pa), 1 - qiI(1 - qi qz) ,  1 - riI(1- rl ~ 8 ) )  (26) 

for PI, q l ~  rl c (0, I) ,  pa, 223 r2 [OY 11 such that fi pa # l9 qs go # 1, r1 ra # 1. 

Consider the function 

1-8 0-1 1-fl \ 

F @ I ,  fi; ql, q2; r19r2)  = f  ( ~ 1 ~ 4 ~ .  ; I )  + I + (1  -PI )  (1  -ql) (1-r1f-' ] , 

We shall show that F (pl, fi; 41, q2; 7 2 )  is sI'mmetrh i.e-9 

r2, T I ) .  P (p,, fi; ply q2; 71, 7 2 )  = P ( ~ 2 9  PI; Q29 q 1 9  (28) 

Let us take j? # 1 ( 8  > O),  then by (26), 
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(1-*11(1- ~ 2 ) )  f ( ~ 2 7  929 (29 ) 

B-1 + (1 1 I 1 - 1 2 ( 1  - 1 I 1 - 1 2 -  (1  - 1 I 1 - 1 f (p2 ~29.8) 
1-jl B-1 

= f @*I¶ q * ~ ,  rrl)  4- P*I q * ~  r*l f @L, q2 ,  r2) - f ( I - P I  P,), I---98 1 (l-q$ q8), 1-r21(1-r1 rid )+ 

1-B 4- { I  - ~2 1 I -PI PSI  ( I  -92 1 l .  - ?I1 q21 ( I  - r2 1 I- ra)'- f (p l ,  q 1 9  T I ]  

= 8 ( ~ 2 ,  pi; 42s  21; T2, T i )  

Then it follows from (27) that 
P (%, p2; q2;) 1.2) - 3 (p2. PI;  42, ql; r2, r l )  = 0 ,  proving (28) 

Next putting p2 = & q, = 1, r2 = 1 or p2 = 1 - 8, q2 =5 0, r2 s 0 in (28) and using the definition of 
8 (pl, p& p i ,  q,; 9.1; re) and (22) we get 

1 -  8-1 1-8 
0 =f (pl*ql.rl)  +[ Pl !?I Tl + ( l - ~ l ) t l - z l )  ( ~ - r ~ ) ~ - l ]  

- 1 - P f ( ~ 1 9  q 1 9  ~ 1 )  

Prom this it follows that; 
1-f3 8-1 1-I3 

for all pl, ql,rl P (9, 1). 

The result is true even when pl = ql = rl = 0 or p1 = ql = r ,  = I .  

2'HBOREJ-l I v  Let P = (PI ,  p2. . . ., ptJ, Q = (91, q,: . . . , ~ n )  and R = (r,, r2, . . . , r,) be three complete 
probability distributions then the information of kind /3 derived from the information improvement 
function of kind ,!3 is in general given by (19) and if the information improvement function f (x, y, 2 )  

of kind /I is as obtained in theorm I11 then the corresponding information improvement of kind f l  i~ 

 roof: Substituting the expression for f (3, y, 2 , )  from (23) in (19) we have - I 

clearly, which is (30). 
I 

P R O P E R T I E S  O F  I N F O R M A T I O N  I M P R O V E M E N T  OF K I N D  f i  
B 

Several properties like ammetry, null-information, expdnsibility can be easily derived for H ,  (1D;Q;R) 
B 

We mention below, some other properties for H ,  (P;Q;R). 

6a 



(i) Stroragly (Nora-Comuta;tiue Additive Property). 

. - 

B 
= H,, 

where P'i = ( ~ u ,  p2t~ . . ., pd) Y Q'i = (g1is qai~ai,. . - 9  qna) Y 

R>=(rli , .  .. . Y ~ A ) ,  PI* P'i=(plP117plp81~. . . . Y ~ ) I  %i) eh., 
m m m 

and X ~ j i , .  . . ., = 1, Z Yji = 1 B rji =1 for all i = 1,2,. . . .. n. 
j=1 , j=1 j=1 

An interesting special sase of (31) is given below. 

where P = (pl, 232,. . . . , pn) and P' = (PI7 Pay. . . . , Pm) eta. and 
m n m 
2 Pj = 1, X Qj = 1 and B Rj = 1. 

j=1 j=l j=1 

p e n  p-+ 1, the last term in (32) vanishes and we have the known additive property of Theil's 'iqforma- 
tion-improvement . 

, When B# 1, we have 
P* P 

R' 

aooordingas 
I 

(ii) Reculrsive-Propmty 
n.. . . - 9 ~ n 1  

2 /q lyq, , . . . .~qn 1 q1+ q27 qa,. .-gs 

Lrl, Y z y .  . - .7rn 



ii 
i% n 
Pjqli,...., z p i q t t ~  

i = l  n 
= 2 pi Ei* y1, . . ..qm 

i = l  
1 

I I 
*?'I, . . . . . ,r", TI.. . . .... . 1 * .  d 
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