ON A FUNCTIONAL EQUATION IN TWO AND THREE VARIABLES WITH MEASURES OF KIND β IN INFORMATION THEORY

Raminder Singh Soni
University of Delhi, Delhi
(Received 4 October 1973)
Starting from a functional equation of two variables containing a parameter β, the information function of kind β given have been obtained. The paper contains a characterization and properties of this measure. Also the study has been extended to the information improvement of the prediction probability distribution $\left(q_{1}, q_{2}, \ldots q_{n}\right)$ revised as $\left(r_{1}, . r_{2}, r_{n}\right)$ on the basis of realization ($p_{1}, p_{2}, \ldots, p_{n}$).

Let $P=\left(p_{1}, p_{z}, \ldots, p_{n}\right) p_{i}=0, \sum_{i=1}^{n} p_{i}=1$ be a probability distribution of a set of n events on the basis of an experiment E whose true (prediction) probability distribution is $Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$, $q_{i} \geqslant 0, \sum_{i=1}^{n} q_{i}=1$, then Kullback's ${ }^{1}$ measure of information that P provides about Q is

$$
\begin{equation*}
I(P ; Q)=\sum_{i=1}^{n} p_{i} \log \left(p_{i} q_{i}^{-1}\right) \tag{1}
\end{equation*}
$$

Again let $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right), r_{i}=0, \sum_{i=1}^{n} r_{i}=1$ be a revised probability distribution of a original probability distribution $Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right), q_{i} \geq 0, \sum_{i=1}^{n} q_{i}=1$ on the basis of realization $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), p_{i} \geqslant 0, \sum_{i=1}^{n} p_{i}=1$ obtained from the experiment E. Then the information improvement ${ }^{2}$ is given by

$$
\begin{equation*}
I(P ; Q ; R)=\sum_{i=1}^{n} p_{i} \log \left(r_{i} q_{i}^{-1}\right) \tag{2}
\end{equation*}
$$

In this paper we shall take the functional equation in two and three variables, involving a parameter β which under suitable boundary conditions would give the new measures named as the 'information' and 'information-improvement' of kind β^{3}. The paper contains the characterizations of these new measures and some of their properties.

Sharma and Autar ${ }^{4}$ have studied earlier ${ }^{5,6}$ some other generalizations of (1) and (2) differently.

$$
\text { CHARACTERIZATION OF INFORMATION OF KIND } \beta
$$

We shall first take generalization of (1).
Let the information of kind β of P with respect to Q denoted by L_{n} be taken to satisfy the following postulates :

Postulate I

$$
L_{n}\binom{p_{1}, p_{2}, \ldots, p_{n}}{q_{1}, q_{2}, \ldots, q_{n}}=L_{n-1}\binom{P_{2}, p_{3}, \ldots, p_{n}}{Q_{2}, q_{3}, \ldots, q_{n}}+P_{2}^{\beta} Q_{2}^{1-\beta} L_{2}\binom{p_{1} / P_{2}, p_{2} / P_{2}}{q_{1} / Q_{2}, q_{2} / Q_{2}}
$$

where $\quad P_{2}=p_{1}+p_{2}, Q_{2}=q_{1}+q_{2}, P_{2}, Q_{2}>0$.

Postulate II

$L_{3}\binom{p_{1}, p_{2}, p_{3}}{q_{1}, q_{2}, q_{3}}$ is a symmetric function such that for any permutation of p 's there is the same permutation of q 's.

Postulate III

$$
L_{2}\binom{\beta^{1 / \beta}, 1-\beta^{1 / \beta}}{1,}=1 . \quad(0<\beta<1)
$$

Note 1: The postulate I is a recursivity of information of kind β and it is a relation corresponding to additivity. Also postulate III can be considered as a normalization property and here it includes the parameter β for the quantities were $0<\beta<1$.

Note 2 : If we take

$$
\begin{equation*}
f(x, y)=L_{2}\binom{x, 1-x}{y, 1-y} \tag{3}
\end{equation*}
$$

then with the help of postulates I and II, $L_{n}(n \geqslant 3)$ can be expressed in terms of the single function $f(x, y)$.

The postulate I at once gives the elegant form

$$
\begin{equation*}
L_{n}=\sum_{i=2}^{n} P_{i} \beta Q_{i}^{1-\beta} \cdot f\left(p_{i} / P_{i}, q_{i} / Q_{i}\right), \tag{4}
\end{equation*}
$$

where $\quad P_{i}=p_{1}+p_{2}+\ldots+p_{i}, Q_{i}=q_{1}+q_{2}+\ldots+q_{i}, \quad i=1,2, \ldots, n$ with $P_{n}=Q_{n}=1$.
When recursivity and symmetry of information of kind β are applied ${ }^{7}$ to L_{3}, we obtain the functional equation

$$
\begin{align*}
f(x, y)+ & (1-x) \beta(1-y)^{1-\beta} f[u /(1-x), v(1-y)] \tag{5}\\
& \left.=f(u, v)+(1-u)^{\beta}(1-v)\right)^{-\beta} f[x /(1-u), y /(1-v)] \\
& \text { for } x, y, u, v \in[0,1] \text { with } x+u, y+v \in[0,1] .
\end{align*}
$$

If we put $y=x$ and $v=u$ and take $f(x, x)=f(x),(5)$ reduces to Kendall's ${ }^{8}$ functional equation of information function.
We now adopt the following definition.
Definition: A real-valued solution $f(x, y)$ of (5) defined on $[0,1] \times[0,1]$ is said to be an information function of kind $\beta \in(0,1)$, it satisfies the following boundary conditions

$$
\begin{gather*}
f(0,0)=f(1,1) \tag{6}\\
f\left(\beta^{1 / \beta}, 1\right)=f\left(1-\beta^{1 / \beta}, 0\right)=1 \tag{7}
\end{gather*}
$$

Again if $f(x, y)$ is an information function of kind β then the information of kind β that P provides about Q is given by (4).

It is shown below that $f(x, y)=f(1-x, 1-y)$ and $f(0,0)=0$. Thus (7) follows by putting. $x=\beta^{1 / \beta}$ and $y=1$ in (5).

We now give chafacterizations of information function and information of kind $\beta(\neq 1)$ in theorems I and II respectively.

Theorem I

The only solution $f(x, y)$ of (5) satisfying the additional conditions (6), and (7) is given by

$$
\begin{align*}
& f(x, y)= {\left[1-x \beta y-\beta-(1-x)^{\beta}(1-y)^{1-\beta}\right](1-\beta)^{-1} } \tag{8}\\
& \text { for }(x, y) \in[0,1] \times[0,1] \sim(0,1) U(1,0) ; \beta \in(0,1) \\
& \text { We shall take } 0^{\alpha}=0(\alpha \neq 0)
\end{align*}
$$

Proof: Taking $x=y=0$ in (5), $f(0,0)=0$ and hence from (6), we get

$$
\begin{equation*}
f(1,1)=f(0,0)=0 \tag{9}
\end{equation*}
$$

Now replacing u, v in (5) by $1-x$ and $1-y$ respectively and applying (9), we have

$$
\begin{equation*}
f(x, y)=f(1-x, 1-y) \text { for } x, y \in[0,1] \tag{10}
\end{equation*}
$$

Let $p_{1}, p_{2}, q_{1}, q_{2}$ be four arbitrary numbers belonging to $(0,1)$. Setting $p_{1}=1-x, p_{2}=u(1-x)^{-1}$, $q_{1}=1-y, q_{2}=v(1-y)^{-1}$ in (5) and using (10), we have.

$$
\begin{array}{r}
f\left(p_{1}, q_{1}\right)+p_{1}^{\beta} q_{1}^{1-\beta f\left(p_{2}, q_{2}\right)=} \begin{aligned}
& f\left(p_{1} p_{2}, q_{1} q_{2}\right)+\left(1-p_{1} p_{2}\right) \beta\left(1-q_{1} q_{2}\right)^{1}-\beta \\
& f\left(1-p_{1} /\left(1-p_{1} p_{2}\right), 1-q_{1} /\left(1-q_{1} q_{2}\right)\right)
\end{aligned} . \tag{11}
\end{array}
$$

$$
11-20
$$

for $p_{1}, q_{1} \in[0,1], p_{2}, q_{2} \in[0,1]$ such that $p_{1} p_{2} \neq 1$ and $q_{1} q_{2} \neq 1$.
Take the function

$$
\begin{gather*}
F\left(p_{1}, p_{2} ; \eta_{1}, q_{2}\right)=f\left(p_{1}, q_{1}\right)+\left[p_{1}^{\beta} q_{1}^{1}-\beta+\left(1-p_{1}\right) \beta\left(1-q_{1}\right)^{1-\beta}\right] f\left(p_{2}, q_{2}\right) \\
\text { where } p_{1}, p_{2}, q_{1}, q_{2} \in(0,1) . \tag{12}
\end{gather*}
$$

We shall show that $F\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)$ is symmetric, i.e.,

$$
\begin{equation*}
F\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)=F\left(p_{2}, p_{1} ; q_{2}, q_{1}\right) \tag{13}
\end{equation*}
$$

From (11) and (12) we have

$$
\begin{align*}
F\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)= & f\left(p_{1} p_{2}, q_{1} q_{2}\right)+\left(1-p_{1} p_{2}\right)^{\beta}\left(1-q_{1} q_{2}\right)^{1}-\beta\left[f \left(1-p_{1} /\left(1-p_{1} p_{2}\right), 1-q_{1} /\right.\right. \\
& \left.\left.\left(1-q_{1} q_{2}\right)\right)+\left(1-p_{1} /\left(1-p_{1} p_{2}\right)\right)^{\beta}\left(1-q_{1 /}\left(1-q_{1} q_{2}\right)\right)^{1}-\beta f\left(p_{2}, q_{2}\right)\right] \tag{14}
\end{align*}
$$

Setting $\quad p_{1}^{*}=\left(1-p_{1}\right)\left(1-p_{1} p_{2}\right)^{-1}, \quad q_{1}^{*}=\left(1-q_{1}\right)\left(1-q_{1} q_{2}\right)^{-1}$, we have

$$
\begin{aligned}
A\left(p_{1}, p_{2}: q_{1}, q_{2}\right)= & f\left(1-p_{1} /\left(1-p_{1} p_{2}\right), 1-q_{1} /\left(1-q_{1} q_{2}\right)\right)+\left(1-p_{1} /\left(1-p_{1} p_{2}\right)\right) \beta \\
& \left(1-q_{1} /\left(1-q_{1} q_{2}\right)\right)^{1-\beta} f\left(p_{2}, q_{2}\right) \\
= & f\left(p_{1}^{*}, q_{1}^{*}\right)+p_{1}^{* \beta} q_{1}^{*(1-\beta)} f\left(p_{2}, q_{2}\right)
\end{aligned}
$$

using (10) and (11) we get

$$
\begin{aligned}
& =f\left(\frac{1-p_{2}}{1-p_{1} p_{2}}, \frac{1-q_{2}}{1-q_{1} q_{2}}\right)+\left(\frac{1-p_{2}}{1-p_{1} p_{2}}\right)^{\beta}\left(\frac{1-q_{2}}{1-q_{1} q_{2}}\right)^{1-\beta} f\left(p_{1}, q_{1}\right) \\
& =A\left(p_{2}, p_{1} ; q_{2}, q_{1}\right)
\end{aligned}
$$

So it follows from (12) that

$$
F\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)-F\left(p_{2}, p_{1} ; q_{2}, q_{1}\right)=0, \text { proving (13). }
$$

Next putting $p_{2}=\beta^{1 / \beta}, q_{2}=1$ or $p_{2}=1-\beta^{1 / \beta}, q_{2}=0$ in (13) and using the definition of $F\left(p_{1}, p_{2} ; q_{1}, q_{2}\right)$ and (7) we get

$$
0=f\left(p_{1}, q_{1}\right)+\left[p_{1}{ }^{\beta} q_{1} 1-\beta+\left(1-p_{1}\right)^{\beta}\left(1-q_{1}\right)^{1-\beta}\right]-1-\beta f\left(p_{1}, q_{1}\right)
$$

From this it follows that

$$
f\left(p_{1}, q_{1}\right)=\left[1-p_{1} \beta q_{1} 1-\beta-\left(1-p_{1}\right)^{\beta}\left(1-q_{1}\right)^{1-\beta}\right](1-\beta)^{-1}, \text { for all } p_{1}, q_{1} \in(0,1)
$$

Since $f(0,0)=f(1,1)=0$, the result is true when $p_{1}=q_{1}=0$ or $p_{1}=q_{1}=1$.

Theorem $1 I$

Let $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), \quad Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ be two complete probability distributions then the information of kind β derived from the information function of kind β is in general given by (4) and if the information function $f(x, y)$ of kind β is obtained in theorem I , then the corresponding information of kind β is

$$
\begin{equation*}
H_{n}^{\beta}(P ; Q)=\left[1-\sum_{i=1}^{n} p_{i} \beta q_{i}{ }^{1-\beta}\right](1-\beta),^{-1} \beta \neq 1, \beta>0 \tag{15}
\end{equation*}
$$

Proof: Substituting the expression for $f(x, y)$ from (8) in (4) we have

$$
\begin{aligned}
& H_{n}^{\beta}(P ; Q)=(1-\beta)^{-1} \sum_{i=2}^{n}\left[P_{i} \beta Q_{i}-\beta-P_{i}{ }^{\beta} Q_{i-1}^{1-\beta}-p_{i} \beta q_{i}^{1-\beta}\right] \\
&=(1-\beta)^{-1}\left[P_{n} \beta Q_{n}^{1-\beta}-P_{1} \beta Q_{1}{ }^{1-\beta}-\sum_{i=2}^{n} p_{i} \beta q_{i}^{1-\beta}\right] \\
&=(1-\beta)^{-1}\left[1-\sum_{i=1}^{n} p_{i} \beta q_{i}^{1-\beta}\right], \\
& \quad \text { clearly, it is (15). }
\end{aligned}
$$

PROPERTIESOFINFORMATIONOFKIND β

Several properties like non-negativity, symmetry, null-information and expansibility ${ }^{9}$ can be easily derived for $H_{n}(P ; Q)$.

We mention below some other properties for $H \beta_{n}(P ; Q)$.
Strongly Additive property:

$$
\begin{align*}
&\left.\stackrel{H}{m n}_{\beta}^{\binom{p_{1} * P_{1}^{\prime}, p_{2} * P_{2}^{\prime}, \ldots, p_{n}^{*} P_{n}^{\prime}}{q_{1}^{*} Q_{1}^{\prime}, q_{2}^{*} Q_{2}^{\prime}, \ldots, q_{n}^{*} Q_{n}^{\prime}}=} \begin{array}{rl}
\beta \\
H_{n} & p_{1}, p_{2}, \ldots, p_{n} \\
q_{1}, q_{2}, \ldots, q_{n}
\end{array}\right)+ \\
&+\sum_{i=1}^{n} p_{i} \beta q_{i}^{1-\beta} H_{m}^{\beta}\binom{P_{i}^{\prime}}{Q_{i}^{\prime}} \tag{16}
\end{align*}
$$

where $P_{i}^{\prime}=\left(p_{1 i}, p_{2 i}, \mathcal{S}, p_{m i}\right), Q_{i}^{\prime}=\left(q_{1}, q_{2}, \ldots, q_{m i}\right)$,
$p_{1} * P_{1}^{\prime}=\left(p_{1} p_{11}, p_{1} p_{21},>, p_{1} p_{m 1}\right)$ etc. and $\sum_{j=1}^{m} p_{j i}=1, \sum_{j=1}^{m} q_{j i}=1$
for all $i=1,2, \ldots n$.
An interesting special case of (16) is given below :

$$
\begin{equation*}
\stackrel{\beta}{H_{m n}}\binom{P^{*} P^{\prime}}{Q^{*} Q^{\prime}}=H^{\beta}\binom{P}{Q}+H_{m}^{\beta}\binom{P^{\prime}}{Q^{\prime}}+(\beta-1) H_{n}^{\beta}\binom{P}{Q} H_{m}^{\beta}\binom{P^{\prime}}{Q^{\prime}} \tag{17}
\end{equation*}
$$

where $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), \quad Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right), \quad P^{\prime}=\left(P_{1}, P_{2}, \ldots, P_{m}\right)$,

$$
Q^{\prime}=\left(Q_{1}, Q_{2}, \ldots, Q_{m}\right) \text { and } \sum_{j=1}^{m} P_{j}=1, \sum_{j=1}^{m} Q_{j}=1
$$

When $\beta \rightarrow 1$, the last term in (17) vanishes and we have the well known additivity property of Kullbark's information.
When $\beta \neq 1$ we have

$$
H_{m n}^{\beta}\binom{P^{*} P^{\prime}}{Q^{*} Q^{\prime}}<H \beta_{n}\binom{P}{Q}+H \beta_{m}\binom{P^{\prime}}{Q^{\prime}} \text { for } \beta<1 .
$$

ii Recursive-property

$$
\begin{aligned}
&{\underset{H}{n}}^{\binom{p_{1}, p_{2}}{q_{1}, q_{2}, \ldots, p_{n}}-H \beta_{n-1}\binom{p_{1}+p_{2}, p_{3}, \ldots, p_{n}}{q_{1}+q_{2}, q_{3}, \ldots, q_{n}}} \\
&=\left(p_{1}+p_{2}\right) \beta\left(q_{1}+q_{2}\right)^{1-\beta} H_{2}^{\beta}\left(\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}}\right. \\
&\left.\frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}}\right)
\end{aligned}
$$

with $p_{1}+p_{2}, q_{1}+q_{2}>0$.
$3 i i$

$$
H_{m}^{\beta}\left(\sum_{i=1}^{n} p_{i} q_{1 i}, \ldots, \sum_{i=1}^{n} p_{i} q_{m i}\right) \leqslant \sum_{i=1}^{n} p_{i} H_{m}^{\beta}\binom{q_{1 i}, \ldots, q_{m i}}{q_{1}, \ldots, q_{m}} \text { where } \sum_{j=1}^{m} q_{j i}=1
$$

Proof $\stackrel{\beta}{H_{m}}\left(\sum_{i=1}^{n} p_{i} q_{1 i}, \ldots \sum_{i=1}^{n} p_{i} q_{m i}\right)=(1-\beta)^{-1}\left[1-\sum_{j=1}^{m}\left(\sum_{i=1}^{n} p_{i} q_{j i}\right)^{\beta} q_{j}^{1-\beta}\right]$

$$
\begin{aligned}
& \leqslant(1-\beta)^{-1}\left[\sum _ { i = 1 } ^ { n } p _ { i } \left(1-\sum_{j=1}^{m} q_{j i} q_{j}^{1-\beta}\right.\right. \\
& =\sum_{i=1}^{n} p_{i} H_{m} \beta\binom{q_{11}, \ldots, q_{m i}}{q_{1}, \ldots, q_{m}}
\end{aligned}
$$

because ${ }^{10}$

$$
\left(\sum_{i=1}^{n} p_{i} q_{j i}\right)^{\beta}>\sum_{i=1}^{n} p_{i} q_{j i} \beta \text { if } \beta<1(10)
$$

CHARACTERIZATIONOFINFORMATIONIMPROVEMENT OFKIND B
In this section we shall study a generalization of (2). Let the information improvement of kind β of the probability distributions P, Q and R be denoted by \boldsymbol{U}_{n} be taken to satisfy the following postulates

Postulate IV

$$
\nabla_{n}\left(\begin{array}{c}
p_{1}, p_{2}, \ldots, p_{n} \\
q_{1}, q_{2}, \ldots, q_{n} \\
r_{1}, r_{2}, \ldots, r_{n}
\end{array}\right)=U_{n-1}\left(\begin{array}{c}
P_{2}, p_{3}, \ldots, p_{n} \\
Q_{2}, q_{3}, \ldots, q_{n} \\
R_{2}, r_{3}, \ldots, r_{n}
\end{array}\right)+P_{2} Q_{2}^{1-\beta R_{2} \beta-1} \begin{aligned}
& U_{3}
\end{aligned}\left(\begin{array}{c}
p_{1} / P_{2}, p_{2} / P_{2} \\
q_{1} / Q_{2}, q_{2} / Q_{2} \\
r_{1} / R_{2}, r_{2} / R_{2}
\end{array}\right)
$$

where $P_{2}=p_{1}+p_{2}, Q_{2}=q_{1}+q_{2}, R_{2}=r_{1}+r_{2}, P_{2}, Q_{2}, R_{2}>0$.

Postulate V

$$
U_{3}\left(\begin{array}{l}
p_{1}, p_{2}, p_{3} \\
q_{1}, q_{2}, q_{3} \\
r_{1}, r_{2}, r_{3}
\end{array}\right) \text { is a symmetric function such that for any permutation of } p \text { 's there are }
$$

the same pormutations of q 's and r 's.
Postulate VI

$$
U_{\mathrm{g}}\left(\begin{array}{cc}
\beta, & 1-\beta \\
1, & 0 \\
1, & 0
\end{array}\right)=1 . \quad(0<\beta<1) .
$$

Note IV: The postulate IV is a recursivity of information improvement of kind β it and it is a relation corresponding to additivity. Also postulate VI can be considered as a normalization property and here it includes the parameter β for the quantities where $0<\beta<1$.

Note V : If we take

$$
f(x, y, z)=U_{2}\left(\begin{array}{l}
x, 1-x \tag{18}\\
y, 1-y \\
z, 1-z
\end{array}\right)
$$

then with the help of postulates IV and $V, \nabla_{n}(n>3)$ can be expressed in terms of the single function $f(c, y, z)$.

The postulate IV, at once gives the elegant form

$$
\begin{equation*}
U_{n}=\sum_{i=2}^{n} P_{i} Q_{i}-\beta R_{i} \beta-1 f\left(p_{i} / P_{i}, q_{i} / Q_{i}, r_{i} / R_{i}\right), \tag{19}
\end{equation*}
$$

where $P_{i}=p_{1}+p_{2}+\ldots+p_{i}, \quad Q_{i}=q_{1}+q_{2}+\ldots+q_{i}, \quad R_{i}=r_{1}+r_{2}+\ldots+r_{i}$;
$i=1,2, \ldots, n$ with $P_{n}=Q_{n}=R_{n}=1$.
When recursivity and symmetry of information improvement of kind β are applied to U_{3}, we obtain the functional equation

$$
\begin{align*}
& f(x, y, z)+(1-x)(1-y)^{1-\beta}(1-z)^{\beta-1} f(u / 1-x, v / 1-y, w / 1-z) \\
& \quad=f(u, v, w)+(1-u)(1-v)^{1-\beta(1-w)^{\beta}-1 f(x / 1-u, y / 1-v, z / 1-w)} \tag{20}
\end{align*}
$$

for $x, y, z, u, v, w \in[0,1]$ with x 于 $u, y+v, z+w \in[0, q]$.
If we put $z=x$ and $w=u$ and take $f(x, y, z)=f(x, y),(20)$ reducss to (5), the functional equation for information function of kind β and again if we put $z=y=x$ and $w=v=u$ and take $f(x, x, x)=f(x)$, (20) reduces to Kendall's ${ }^{8}$ functional equation for information fanction.

We now adopt the following definition,

Definition: A real-valued solution $f(x, y, z)$ of (20) defined on $[0,1] \times[0,1] \times[0,1]$ is said to be an information improvement function of kind $\beta \in(0,1)$, if it satisfies the following boundary conditions

$$
\begin{gather*}
f(0,0,0)=f(1,1,1) \tag{21}\\
f(\beta, 1,1)=f(1-\beta, 0,0)=1 \tag{22}
\end{gather*}
$$

for a given β such that $0<\beta<1$.
Again if $f(x, y, z)$ is an information improvement function of kind $\beta(\neq 1)$ then the information improvement of kind $\beta(\neq 1)$ is given by (19).

Note $V I:$ It is shown below that $f(x, y, z)=f(1-x, 1-x, 1-z)$ and that $f(0,0,0)=0$. Now (22) follows by putting $x=\beta, y=1, z=1$ in (20).

We now give characterizations of information improvement function and information improvement of kind $\beta(\neq 1)$ in theorems III and IV respectively.

THEOREM III The only solution $f(x, y, z)$ of (20) satisfying the additional conditions (21) and (22) is given by

$$
\begin{aligned}
& f(x, y, z)=\left[\begin{array}{cc}
1-x y^{1-\beta}-z^{\beta-1}-(1-x)(1-y)^{1-\beta}(1-z)^{\beta-1}
\end{array}\right](1-\beta)^{-1} \\
& \text { for }(x, y, z) \in[0,1] \times[01] \times[0,1] \sim(x, 1,0) U(x, 0,0) U(x, 0,1) U(x, 11) \text { (We shali take } \\
& \left.\quad 0^{a}=0(\alpha \neq \cup)\right) .
\end{aligned}
$$

Proof: Taking $x=y=z=0$ in (20), $(f 0,0,0)=$,0 and hence from (21) we get

$$
\begin{equation*}
f(1,1,1,)=f(0,0,0,)=0 \tag{24}
\end{equation*}
$$

Now replacing u, v, w, in (20) by $1-x, 1-y$, and $1-z$ respectively and applying (24) we have

$$
\begin{align*}
& f(x, y, z)=f(1-x, 1-y, 1-z) \tag{25}\\
& \text { for } x, y, z \in[0,1] .
\end{align*}
$$

Let $p_{1} p_{2}, q_{1}, q_{2}, r_{1}, r_{2}$, be six arbitrary numbers from the open interval (0,1). Setting $p_{1}=1-x$, $p_{2}=u(1-x)^{-1}, q_{1}=1-y, q_{2}=v(1-y)^{-1}, r_{1}=1-z, r_{2}=w(1-z)^{-1}$ in (20) and using (25), we have

$$
\begin{gather*}
f\left(p_{1}, q_{1}, r_{1}\right)+p_{1} q_{1}^{1-\beta} r_{1}^{\beta-1} f\left(p_{2}, q_{2}, r_{2}\right)+\left(1-p_{1} p_{2}\right)\left(1-q_{1} q_{2}\right)^{1-\beta}\left(1-r_{1} r_{2}\right)^{\beta-1} \\
\cdot f\left(1-p_{1} /\left(1-p_{1} p_{2}\right), 1-q_{1} /\left(1-q_{1} q_{2}\right), 1-r_{1} /\left(1-r_{1} r_{2}\right)\right) \tag{26}
\end{gather*}
$$

for $p_{1}, q_{1}, r_{1} \in(0,1), p_{2}, q_{2}, r_{2} \in[0,1]$ such that $p_{1} p_{2} \neq 1, q_{1} q_{2} \neq 1, r_{1} r_{2} \neq 1$.
Consider the function

$$
\begin{gather*}
F\left(p_{1}, p_{2} ; q_{1}, q_{2} ; r_{1}, r_{2}\right)=f\left(p_{1}, q_{1}, r_{1}\right)+\left[p_{1} q_{1}^{1-\beta} r_{1}^{\beta-1}+\left(1-p_{1}\right)\left(1-q_{1}\right)^{1-\beta}\left(1-r_{1}\right)^{\beta-1}\right]_{1}^{1} \\
f\left(p_{2}, q_{2}, r_{2}\right), p_{1}, p_{2}, q_{1}, q_{2}, r_{1}, r_{2} \in(0,1) . \tag{27}
\end{gather*}
$$

We shall show that $F\left(p_{1}, p_{2} ; q_{1}, q_{2} ; r_{1}, r_{2}\right)$ is symmetric, i.e.,

$$
\begin{equation*}
F\left(p_{1}, p_{2} ; q_{1}, q_{2} ; r_{1}, r_{2}\right)=F\left(p_{2}, p_{1} ; q_{2}, q_{1} ; r_{2}, r_{1}\right) \tag{28}
\end{equation*}
$$

Let us take $\beta \neq 1(\beta>0)$, then by (26),

$$
\begin{gathered}
\left.\vec{k} p_{1}, p_{2} ; q_{1}, q_{2} ; r_{1}, r_{2}\right)=f\left(p_{1} p_{2}, q_{1} q_{2}, r_{1} r_{2}\right)+\left(1-p_{1} p_{2}\right)\left(1-q_{1} q_{2}\right)^{1-\beta}\left(1-r_{1} r_{2}^{\beta-1} \cdot\right. \\
{\left[f \left(1-p_{1} \mid\left(1 p_{1} p_{2}\right), 1-q_{1}\left(1-q_{1} q_{2}\right),\right.\right.}
\end{gathered}{ }^{\left.1-r_{1} \mid\left(1-r_{1} r_{2}\right)\right)+\left(1-p_{1}\left(1-p_{1} p_{2}\right)\right)\left(1-q_{1} \mid\left(1-q_{1} q_{2}\right)^{1-\beta}\right.} .
$$

$$
\begin{equation*}
\left.\cdot\left(1-r_{1} /\left(1-r_{1} r_{2}\right)\right) f\left(p_{2}, q_{2}, r_{2}\right)\right] \tag{29}
\end{equation*}
$$

Again setting $p_{1}^{*}=\left(1-p_{1}\right)\left(1-p_{1} p_{2}\right)^{-1}, q_{1}^{*}=\left(1-q_{1}\right)\left(1-q_{1} q_{2}\right)^{-1}, r_{1}^{*}=\left(1-r_{1}\right)\left(1-r_{1} r_{2}\right)^{-1}$,

$$
A\left(p_{1}, p_{2} ; q_{1}, q_{2}, r_{1}, r_{2}\right)=
$$

$$
\begin{aligned}
& =f\left(1-p_{1}\left|\left(1-p_{1} p_{2}\right), 1-q_{1}\right|\left(1-q_{1} q_{2}\right), 1-r_{1} \mid\left(r-r_{1} r_{2}\right)\right)+ \\
& +\left(1-p_{1} \mid 1-p_{1} p_{2}\right)\left(1-q_{1} \mid 1-q_{1} q_{2}\right)^{1-\beta}\left(1-r_{1} \mid 1-r_{1} r_{2}\right){ }^{\beta-1} f\left(p_{2} g_{2} r_{2}\right) \\
& =f\left(p^{*}, q_{1}^{*}, r_{1}^{*}\right)+p_{1}^{*} q_{1}^{*}{ }_{r_{1}^{*}}{ }^{1-1} f\left(p_{2}, q_{2}, r_{2}\right) \\
& =f\left(1-p_{2}\left|\left(1-p_{1} p_{2}\right), 1-q_{2}\right|\left(1-q_{1} q_{2}\right), 1-r_{2} \mid\left(1-r_{1} r_{2}\right)\right)+ \\
& +\left(1-p_{2} \mid 1-p_{1} p_{2}\right)\left(1-q_{2} \mid 1-q_{1} q_{2}\right)^{1-\beta}\left(1-r_{2} \mid 1-r_{1} r_{2}\right)^{\beta-1} f\left(p_{1}, q_{1}, r_{1}\right) \\
& =A\left(p_{2}, p_{1} ; q_{2}, q_{1} ; r_{2}, r_{1}\right)
\end{aligned}
$$

Then it follows from (27) that

$$
\left.F\left(p_{1}, p_{2} ; r_{1}, q_{2} ;\right) q_{1}, r_{2}\right)-F\left(p_{2}, p_{1} ; q_{2}, q_{1} ; r_{2}, r_{1}\right)=0, \quad \text { proving }(28)
$$

Next putting $p_{2}=\beta, q_{2}=1, r_{2}=1$ or $p_{2}=1-\beta, q_{2}=0, r_{2}=0$ in (28) and using the definition of $F\left(p_{1}, p_{2} ; q_{1}, q_{2} ; r_{1}, r_{2}\right)$ and (22) we get

$$
0=f\left(p_{1}, q_{1}, r_{1}\right)+\left[p_{1} q_{1}^{1-\beta} r_{1}^{\beta-1}+\left(1-p_{1}\right)\left(1-q_{1}\right)^{1-\beta}\left(1-r_{1}\right)^{\beta-1}\right]
$$

$$
-1-\beta f\left(p_{1}, q_{1}, r_{1}\right)
$$

From this it follows that

$$
\begin{gathered}
f\left(p_{1}, q_{1}, r_{1}\right)=\left[1-p_{1} q_{1}{ }^{1-\beta}{ }_{r_{1}}^{\beta-1}-\left(1-q_{1}\right)\left(1-q_{1}\right)^{1-\beta}\left(1-r_{1}\right)^{\beta-1}\right](1-\beta)^{-1} \\
\text { for all } p_{1}, q_{1}, r_{1} \in(0,1) .
\end{gathered}
$$

The result is true even when $p_{1}=q_{1}=r_{1}=0$ or $p_{1}=q_{1}=r_{1}=1$.
THEOREM IV Let $P=\left(p_{1}, p_{2}, \ldots, p_{n}\right), Q=\left(q_{1}, q_{2}, \ldots, q_{n}\right)$ and $R=\left(r_{1}, r_{2}, \ldots, r_{n}\right)$ be three complete probability distributions then the information of kind β derived from the information improvement function of kind β is in general given by (19) and if the information improvement function $f(x, y, z)$ of kind β is as obtained in theorm III then the corresponding information improvement of kind β is

$$
\begin{equation*}
H_{n}^{\beta}(P ; Q ; R)=\left[1-\sum_{i=1}^{n} p q_{i}^{\left.1-\beta_{n_{i}}^{\beta-1}\right](1-\beta)^{-1}, \beta \neq \beta>0 . . . ~}\right. \tag{30}
\end{equation*}
$$

proaf: Substituting the expression for $f(x, y, z$,$) from (23) in (19) we have$

$$
\begin{aligned}
H_{n}^{\beta}(P ; Q ; R)= & (1-\beta)^{-1} \sum_{i=2}^{n}\left[P_{i} Q_{i}^{1-\beta} R_{i}^{\beta-1} P_{i-1} Q_{i-1}^{1-\beta} R_{i-1}^{\beta-1}-p_{i} q_{i}^{1-\beta} r_{i}^{\beta-1}\right] \\
= & (1-\beta)^{-1}\left[P_{n} Q_{n}^{1-\beta} R_{n}^{\beta-1}-P_{1} Q_{1}^{1-\beta} R_{1}^{\beta-1}-\sum_{i=2}^{n} p_{i} q_{i}^{1-\beta} r_{i}^{\beta-1}\right] \\
= & (1-\beta)^{-1}\left[1-\sum_{i-1}^{n} p_{i} q_{i}^{1-\beta} r_{i}^{\beta-1}\right] \\
& \quad \text { clearly, which is (30).}
\end{aligned}
$$

PROPERTIES OF INFORMATIONIMPROVEMENTOFKIND β
Several properties like symmetry, null-information, expansibility can be easily derived for ${ }_{H_{n}}^{\beta}(P ; Q ; R)$ We mention below, some other properties for $H_{n}^{\beta}(P ; Q ; R)$.
(i) Strongly (Non-Commutative Additive Property).
where

$$
P_{i}^{\prime}=\left(p_{1 i}, p_{2}, \ldots, p_{n i}\right), Q_{i}^{\prime}=\left(q_{1 i}, q_{2 i}, \ldots, q_{m i}\right)
$$

$$
R_{i}^{\prime}=\left(r_{1 i}, \ldots, r_{m i}\right), p_{1}{ }^{*} P_{1}^{\prime}=\left(p_{1} p_{11}, p_{1} p_{21}, \ldots, p_{1} p_{m i}\right) \text { etc., }
$$

and

$$
\sum_{j=1}^{m} p_{j i}, \ldots .,=1, \sum_{j=1}^{m} q_{j i}=1 \sum_{j=1}^{m} r_{j i}=1 \text { for all } i=1,2, \ldots \ldots n
$$

An interesting special case of (31) is given below.

$$
{\underset{H}{m n}}_{\beta}\left[\begin{array}{c}
P^{*} P^{\prime} \tag{32}\\
Q^{*} Q^{\prime} \\
{ }^{*} R^{\prime}
\end{array}\right]=H_{n}^{\beta}\left[\begin{array}{c}
P \\
Q \\
R
\end{array}\right]+H_{m}^{\beta}\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime} \\
R^{\prime}
\end{array}\right]+(\beta-1) H_{n}^{\beta}\left[\begin{array}{l}
\mathcal{P} \\
Q \\
R
\end{array}\right] \boldsymbol{H}_{m}\left[\begin{array}{l}
\boldsymbol{P}^{\prime} \\
\boldsymbol{Q}^{\prime} \\
\boldsymbol{R}^{\prime}
\end{array}\right]
$$

where

$$
P=\left(p_{1}, p_{2}, \ldots, p_{n}\right) \text { and } P^{\prime}=\left(P_{1}, P_{2}, \ldots, P_{m}\right) \text { etc. and }
$$

$$
\sum_{j=1}^{m} P_{j}=1, \sum_{j=1}^{n} Q_{j}=1 \text { and } \sum_{j=1}^{m} R_{j}=1
$$

When $\beta \rightarrow 1$, the last term in (32) vanishes and we have the known additive property of Theil's informa-tion-improvement.
When $\beta \neq 1$, we have

$$
H_{m n}^{\beta}\left[\begin{array}{c}
P^{*} P \\
Q^{*} Q^{\prime} \\
R^{*} R^{\prime}
\end{array}\right]<H_{n}^{\beta}\left[\begin{array}{l}
P \\
Q \\
R
\end{array}\right]+H_{m}^{\beta}\left[\begin{array}{l}
P^{\prime} \\
Q^{\prime} \\
R^{\prime}
\end{array}\right]
$$

according as $\quad(\beta-1) \quad H_{n}\left[\begin{array}{c}P \\ Q \\ R\end{array}\right] \quad{ }_{H}^{\beta}\left[\begin{array}{l}P_{m}^{\prime} \\ Q^{\prime} \\ R^{\prime}\end{array}\right]<0$.
(ii) Recursive-Property

$$
\begin{gathered}
H_{n}^{\beta}\left[\begin{array}{l}
p_{1}, p_{2}, \ldots, p_{n} \\
q_{1}, q_{2}, \ldots, q_{n} \\
r_{1}, r_{2}, \ldots, r_{n}
\end{array}\right]-H_{n-1}^{\beta}\left[\begin{array}{l}
p_{1}+p_{2}, p_{3}, \ldots, p_{n} \\
q_{1}+q_{2}, q_{3}, \ldots . . q_{n} \\
r_{1}+r_{2}, r_{3}, \ldots, r_{n}
\end{array}\right] \\
\left.=\left(p_{1}+p_{2}\right)\left(q_{1}+q_{2}\right)^{-\beta}\left(r_{1}+r_{2}\right)^{\beta-1} H_{2}^{\beta} \left\lvert\, \begin{array}{l}
\frac{p_{1}}{p_{1}+p_{2}}, \frac{p_{2}}{p_{1}+p_{2}} \\
\frac{q_{1}}{q_{1}+q_{2}}, \frac{q_{2}}{q_{1}+q_{2}} \\
\frac{r_{1}}{r_{1}+r_{2}}, \frac{r_{2}}{r_{1}+q_{2}}
\end{array}\right.\right] ;(n>3)
\end{gathered}
$$

$$
\begin{align*}
& H_{m n}^{\beta} \quad\left[\begin{array}{l}
p_{1}^{*} P_{1}^{\prime}, p_{2}^{*} P_{2}^{\prime}, \ldots, p_{n}^{*} P_{n}^{\prime} \\
q_{1}^{*} Q_{1}^{\prime}, q_{2}^{*} Q_{2}^{\prime}, \ldots, q_{n}^{*} Q_{n}^{\prime} \\
r_{1}^{*} R_{1}^{\prime}, r_{2} R_{2}^{\prime}, \ldots, r_{n} R_{n}^{\prime}
\end{array}\right]= \\
& =H_{n}^{\beta} \quad\left[\begin{array}{l}
p_{1}, p_{2}, \ldots \ldots, p_{n} \\
q_{1}, q_{2}, \ldots, q_{n} \\
r_{1}, r_{2}, \ldots \ldots, r_{n}
\end{array}\right]+\sum_{i=1}^{n} p_{i} q_{i} \quad r_{i} \quad H_{m}^{\beta} \quad\left[\begin{array}{l}
P_{i}^{\prime} \\
Q_{i}^{\prime} \\
R_{i}^{\prime}
\end{array}\right] \tag{31}
\end{align*}
$$

$i i$

$$
H_{m}^{\beta}\left\{\begin{array}{c}
\sum_{i=1}^{n} p_{i} q_{1 i}, \ldots, \sum_{i=1}^{\Sigma p_{i}} q_{m i} \\
q_{1} \ldots \ldots, q_{m} \\
r_{1}, \ldots, \ldots, r_{m}
\end{array}\right\}=\sum_{i=1}^{n} p_{i} H_{m} \quad\left\{\begin{array}{l}
q_{1 i}, \ldots, q_{m i} \\
q_{1}, \ldots, q_{m} \\
r_{1}, \ldots, r_{m}
\end{array}\right\}
$$

ACKNOWLEDGEMENTS
The author wishes to express his sincere thanks to Dr. Abu Sharma, Reader in Mathem atios, University of Delhi for guidance and encouragement in carrying out this research work and to Professor U. N. Singh, Dean, Faculty of Mathematics for providing farilities in the department.

Thanks are also due to C.S.I.R. for the award of Research Fellowship.

REFERENOES

1. Kollabade, S., "Information Theory and Statistios" (John Wiley and Sons, Inc. N.Y.) (1959).
2. Therl, H., "Economios and Information Theory" (Noth Holl. Pub. Co.) (1967).
3. Aвгмрzo, S. Information and Control 19 (1971), 181-194.
4. SHARMA, B.D. \& RAM Autar, : "Generalized information Improvement functions" Metrika.
5. Rathis, P.N. \& Kansappax P1., Information and Control, 20 (1972), 38-45.
6. Annales Polonici Mathematici, 26 (1972), 95-101.
7. Dabroczy.Z. Information and Control, 15 (1970), 36-51.
8. Kendall, D.G., Zeit, Wahrs. Verw, Geb., 2 (1964), 225-229.
9. Aozel, J., On different characterizations of Entropies, Proc. Internat. Symp. McMaster Univ. Lecture Notes in Mathematics No. 89, Springer-Verlag N.Y. (1969), pp. 1-11.
10. GıI lacme, R.C., 'Information Theory and Reliable Communications', (John Wiley and Sons, Inc. N.Y.) (1968) pp, 522 - 523.
