STUDIES IN SULPHONAMIDES-PART VII

Synthesis of 1, 3-diaryl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones and evaluation of their antibacterial properties

(MRS.) AJAYA KABRA, G.S. SAHABIA & H.R. SHARMA

University of Delhi, Delhi

(Received 9 April 1974)

Different 1, 3-diarylpropane-1, 3-diones, 1-(*p*-nitrophenyl) 3-phenyl-, *p*-nitrophenyl) -3-(*p*-methylphenyl)-, 1-(*p*-nitrophenyl)-3-(*p*-methoxyphenyl)-, and 1-(*m*-nitrophenyl)-3- (*p*-methylphenyl) propane 1, 3-diones have been synthesised and coupled with a number of diazotised sulphonamide bases to yield the respective 1, 3-diaryl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones. All these substituted sulphonamidobenzeneazo propane-1, 3-diones have been sorecened *in vitro* for their antibacterial properties using cup-plate agar diffusion method and some of these have been found active.

Encouraged by the findings on the study of coupling reactions of β -diketones and antibacterial propertie of the azo compounds reported earlier¹, some new β -diketones were prepared and coupled with various diazotised sulphonamide bases having aromatic as well as heterocyclic rings attached at N¹-Nitrogen as represented in general formula (A).

This work was taken up with a view to (1) study the effect of the electron attracting and electron repelling groups present in the phenyl rings of the β -diketones on the rate of coupling reaction and make acomparison amongst these and also with the results obtained earlier, and (2) observe the effect of intro ducing the heterocyclic ring in the sulphonamide moiety on the antibacterial properties and (3) cyclise these azo compound to the corresponding pyrazole derivatives as very recently picryl, picrylamino and nitro substituted pyrazoles have been reported as potential high explosives, besides their uses in the field of medicine and dye industry.

The antibacterial properties of all the synthesised compounds were studied in vitro against two organisms, S. aureus and E. coli.

EXPERIMENTAL PROCEDURE

Out of the four, the following three new β -diketones were prepared by us employing the method of Barnes and Dodson².

1-(p-Nitrophenyl)-3-(p-methylphenyl) propane-1, 3-dione

p-Nitrobenzaldehyde (0.05 mol) and p-methylacetophenone (0.05 mol) on condensation in presence of aqueous sodium hydroxide furnished p-nitrobenzylidene p-methylacetophenone (ethanol), m.p.162°.

(Found : C, 71.7; H, 5.0. C₁₆H₁₃O₈N requires C, 71.9; H, 4.9%).

This on bromination gave the dibromide, m.p. 155°, which on dehydrobromination and subsequent hydrolysis yielded the required β -diketone (ethanol-glacial acetic acid) m.p. 194° in 75% yield.

(Found : C, 67.7; H, 4.9, C₁₆H₁₃O₄N requires C, 67.8; H, 4.6%).

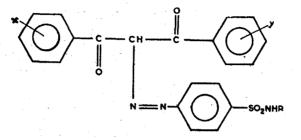
The β -diketone gave an intense violet colouration with aqueous ferric chloride and formed a copper chelate

1-p-Nitrophenyl)-3-(p-methoxyphenyl) propane-1, 3-dione

Equimolecular quantities of p-nitrobenzaldehyde and p-methoxyacetophenone were condensed in presence of aqueous sodium hydroxide to give p-nitrobenzylidene p-methoxyacetophenone crystallised from ethanol as cream coloured solid, m.p. 156°.

(Found : C, 67.6; H, 4. 6, $C_{16}H_{18}O_4N$ requires C, 67.8; H, 4.6%).

The dibromide of the above styryl ketone, m.p. 130° on dehydrobromination and hydrolysis furnished the β -diketone as a bright-yellow crystalline solid (ethanol-glacial acetic acid), m.p. 182° in 80% yield.


25

(Found : C, 64.6; H, 4.3. C₁₆H₁₃O₅N requires C, 64.2; H, 4.3%).

It gave a violet colouration with aqueous ferric chloride and formed a copper chelate with aqueous cupric acetate.

1-(m-Nitrophenyl)-3-(p-methylphenyl) propane 1, 3-dione

m-Nitrobenzaldehyde (0.05 mol) and *p*-methylacetophenone (0.05 mol) in presence of aqueous sodium hydroxide furnished *m*-nitrobenzylidene *p*-methylacetophenone (ethanol), m.p. 131°.

(Found : C, 72.0; H, 4.7. C₁₆H₁₈O₃N requires C, 71.9; H, 4.9%).

Its dibromide, m.p. 170° on dehydrobromination and hydrolysis furnished the β -diketone (ethanol glacial acetic acid) as a pale yellow crystalline solid in 78% yield and had m.p. 157°.

(Found : C, $68 \cdot 0$; H, $4 \cdot 7$. C₁₆H₁₈O₄N requires C, $67 \cdot 8$; H, $4 \cdot 6$ %).

The β -diketone gave a violet colouration with aqueous ferric chloride and formed a copper chelate

The fourth β -diketone, 1-(*p*-nitrophenyl)-3-phenylpropane-1, 3-dione⁸ and the sulphonamides⁴⁻¹⁶ required for the present work were prepared by us by the standard methods.

Synt¹esis of 1, 3-diaryl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones-

A diazotised solution of the sulphonamide (0.002 mol) was gradually added to a well-cooled (0.5°) and well-stirred solution of 1, 3-diarylpropane-1, 3-dione (0.002 mol) in acetone containing sufficient quantity of sodium acetate. The contents were further stirred for 10 minutes and excess of ice-cola water added. The yellow solid which separated out was filtered, washed well with water, dried, and pure 1, 3diaryl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-dione of the type A was crystallised from glacial acetic acid or D.M.F. or from a mixture of the two solvents.

All the azo compounds synthesised are given in Tables 1 to 4.

During the course of this work it was observed that the rate of coupling reaction was higher when only nitro group was present in any of the phenyl rings of the β -diketone. However, if one of the phenyl rings of the β -diketone contained the nitro group and the other an electron repelling group, such as methyl or methoxyl, the rate of coupling reaction was lower as compared to the β -diketone containing only nitro group but more as compared to the β -diketone containing the electron repelling groups¹. The yield of the azo compounds ranged between 68-85%.

EVALUATION OF THE ANTIBACTERIAL ACTIVITY

The antibacterial study of the azo compounds was carried out in vitro at concentrations of 500 μ g/ml and 1,000 μ g/ml against two organi ms S. aureus and E. coli and the results with the solutions having concentration of 500 μ g/ml are given in Tables 1 to 4. Test solutions were prepared in DMF which also worked as a control. The results have been indicated by (+), (++), and (+++) depending upon the clarity and the diameter of the zones of inhibition; where the zones of inhibition of the test solutions were equal to that of the control it is represented by (-) in the Tables.

The results of the antibacterial tests clearly indicated that the antibacterial properties vary with the nature of the substitutents as well as their positions in the phenyl rings. Thus if a nitro group is present in para position in one of the phenyl rings of the β -diketone, the azo compounds synthesised show feeble activity against *E. coli* and hardly any activity against *S. aureus* except compounds number 11, 12 and

13 (Table 1) which showed activity against S. aureus but no activity against E. coli. In the case of 1-(p-nitrophenyl)-3-(p-methylphenyl)-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones, most of the compounds showed activity against both S. aureus and E. coli except compounds 5 and 6 (Table 2) which showed activity only against S. aureaus. But if the nitro group is present in meta-position instead of paras the activity was more or less of the same order with the only difference that some compounds 'did exhibit good activity as compared to the para-analogue.

However, if the methyl group was replaced by methoxyl, as in $1-(p-nitrophenyl)-3-(p-methoxyphenyl)-2-(substituted sulphonamidobenzeneazo) propane-1, 3-dione, the activity of the compounds againt <math>E. \ coli$ decreased.

Another conclusion drawn from the results has been that the nature of the atom or group attached at N¹-nitrogen atom of the sulphonamide group also affects the antibacterial properties. It is also worthwhile to mention that the azo compounds synthesised by coupling diazotised N¹-5-methyl-1, 3, 4-thiadiazol-2-yl sulphanilamide with all the β -diketones were found to possess a fairly high degree of activity against S. aureus and exhibited no activity against E. coli.

TABLE 1

1-(p-Nitrophenyl)-3-phenyl-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones

(A :	$\mathbf{X}\text{-}p\text{-}\mathrm{Nitro}$;	Y-H)
------	---	---	------

S. No.	R		Colour	Yi	eld Molecular formula	C (Fou	C H (Found)		H uired)	Antibacteria activity	
•		(°C)		(%)	(%)	(%)	(%)	(%)	S aureus	E coli
11. 2, 6-Dimet	phenyl 7phenyl hylpyrimidyl	228 211 216 206 212 235 220 232 255 236 231 217 223	SY YN SYN BYF SO Y Y SY SY Y Y BY Y	85 82 83 80 81 82 72 81 84 80 80 81 82	$\begin{array}{c} C_{18} H_{16} 0_6 N_4 S \\ C_{22} H_{18} 0_7 N_4 S \\ C_{27} H_{20} 0_6 N_4 S \\ C_{28} H_{22} 0_6 N_4 S \\ C_{28} H_{22} 0_7 N_4 S \\ C_{28} H_{22} 0_7 N_4 S \\ C_{29} H_{10} 0_6 N_6 S \\ C_{29} H_{10} 0_6 N_5 S \\ C_{27} H_{12} 0_6 N_6 S \\ C_{27} H_{22} 0_6 N_6 S \\ C_{27} H_{22} 0_6 N_6 S \\ C_{27} H_{20} 0_8 N_6 S \\ C_{24} H_{26} 0_6 N_6 S \\ C_{24} H_{26} 0_6 N_6 S \\ C_{24} H_{26} 0_6 N_6 S \\ \end{array}$	$55 \cdot 7$ $56 \cdot 0$ $61 \cdot 5$ $62 \cdot 2$ $60 \cdot 4$ $60 \cdot 0$ $53 \cdot 4$ $59 \cdot 1$ $56 \cdot 5$ $58 \cdot 0$ $58 \cdot 4$ $55 \cdot 1$ $52 \cdot 7$	$3 \cdot 3 3 \cdot 6 3 \cdot 9 4 \cdot 0 4 \cdot 0 4 \cdot 0 3 \cdot 8 3 \cdot 6 3 \cdot 6 4 \cdot 0 4 \cdot 0 3 \cdot 8 3 \cdot 6 3 \cdot 6 5 \cdot 2 5 \cdot 2 \\ 5 \cdot 2 \cdot 2 \\ 5 \cdot $	$55 \cdot 7$ $55 \cdot 9$ $61 \cdot 4$ $62 \cdot 0$ $60 \cdot 2$ $60 \cdot 2$ $53 \cdot 4$ $59 \cdot 0$ $56 \cdot 6$ $58 \cdot 1$ $58 \cdot 1$ $54 \cdot 9$ $52 \cdot 4$	$ \begin{array}{r} 3.5 \\ 3.6 \\ 3.9 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.6 \\ 3.7 \\ 3.9 \\ 3.9 \\ 3.7 \\ 5.1 \\ \end{array} $		++++++

B-Bright; Br-Brownish; D-Dark; F-Flakes ; N-Needles; O-Orange; P-Pale; R-Red; S-Shining; Y-Yellow.

TABLE 2

1-(p-Nitrophenyl)-3-(p-methylphenyl)-2-(substituted sulphonamidobenzeneazo) propar	ue-1, 3-diones
(A: X-p-Nitro; Y-p-Methyl)	

S. Nº.	R	M.P.	Colour	ur Yield		C H (Found)		C H (Requires)		Antibacterial activity	
		(°C)		(%)	mula	(%)	(%)	(%)	(%)	S. aureus	E. coli
11. 2, 6-Dim 12. 2, 6-Dim	yphenyl yphenyl	270 258 225 214 220 254 268 253 231 230 223 1 241	DY SY YF O BYN Y SO SO YON Y Y BY Y	75 73 73 70 71 72 68 75 75 75 74 75 73	$\begin{array}{c} C_{22} H_{13} O_6 N_7 S \\ C_{24} H_{20} O_7 N_4 S \\ C_{25} H_{22} O_6 N_6 S \\ C_{29} H_{24} O_6 N_4 S \\ C_{29} H_{24} O_7 N_4 S \\ C_{29} H_{24} O_7 N_4 S \\ C_{29} H_{24} O_7 N_6 S \\ C_{27} H_{31} O_6 N_6 S \\ C_{28} H_{20} O_6 N_6 S \\ C_{28} H_{24} O_6 N_6 S \\ C_{28} H_{24} O_6 N_6 S \\ C_{28} H_{24} O_6 N_6 S \\ C_{28} H_{20} O_6 N_6 S \\ C_{28} H_{2$	$56 \cdot 6 \\ 56 \cdot 8 \\ 61 \cdot 7 \\ 62 \cdot 4 \\ 61 \cdot 0 \\ 61 \cdot 1 \\ 54 \cdot 5 \\ 60 \cdot 0 \\ 57 \cdot 1 \\ 58 \cdot 9 \\ 58 \cdot 5 \\ 55 \cdot 9 \\ 53 \cdot 4$	$ \begin{array}{c} 4 \cdot 0 \\ 4 \cdot 0 \\ 3 \cdot 9 \\ 4 \cdot 5 \\ 4 \cdot 1 \\ 4 \cdot 2 \\ 3 \cdot 9 \\ 4 \cdot 0 \\ 3 \cdot 8 \\ 4 \cdot 3 \\ 4 \cdot 4 \\ 4 \cdot 1 \\ 3 \cdot 6 \end{array} $	$56 \cdot 6 \\ 56 \cdot 7 \\ 62 \cdot 0 \\ 62 \cdot 6 \\ 60 \cdot 8 \\ 54 \cdot 3 \\ 59 \cdot 7 \\ 57 \cdot 3 \\ 58 \cdot 7 \\ 58 \cdot 7 \\ 55 \cdot 6 \\ 53 \cdot 2 \\ $	$\begin{array}{c} 3 \cdot 9 \\ 3 \cdot 9 \\ 4 \cdot 0 \\ 4 \cdot 3 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 3 \cdot 9 \\ 3 \cdot 9 \\ 3 \cdot 7 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 4 \cdot 0 \\ 3 \cdot 5 \end{array}$	++ + + + + + + + + + + + + + + +	++ + + + + + + + + + + + + + + + + + + +

TABLE 3

1-(p-Nitrophenyl)-3-(p-methonyphenyl)-2-(substituted sulphonamidobenzeneszo) propane-1, 3-diones

(A: X-p-Nitro; Y-p-Methoxy)

8. N	o. B	M.P.	Colour	Yield	Molecular formula	C (Found	H l)	C (Requi	H red).	Antibac activ	
ې دې ورسوس د		(°C)		(%)		(%)	(%)	(%)	(%)	S. aureus	E. coli
1. 2.	H Acetyl	238 195	SY O	77 74	C ₂₃ H ₁₅ O ₇ N ₄ S	54.9	3.5	54.8	3·7 3·8	+	
	Phenyl	237	ŏ	74 76	$\begin{array}{c} C_{24} H_{20} O_8 N_4 S \\ C_{28} H_{22} O_7 N_4 S \end{array}$	$55 \cdot 1 \\ 60 \cdot 1$	3·8 4·0	$54 \cdot 9$ $60 \cdot 2$	3.9		++++
4.	o-Methylphenyl	224	SO	74	C29 H22 O7 N4 S	61.0	$\overline{4} \cdot \overline{1}$	60.8	4.2		÷
5.	o-Methoxyphenyl	226	SO	75	$C_{29} H_{24} O_8 N_4 S$	$58 \cdot 9$	4.3	59 · 1	4.1		+
6.	p-Methoxyphenyl	220	YO	72	C_{29} H ₂₄ O ₈ N ₄ S	59 ·0	4.1	59.1	4.1	+	+
	Guanidyl ¢-Pyridyl	281 254	YBR OR	70	C23 H20 O7 N6 S	$52 \cdot 8$	3.9	52.6	3.8		
8.	Pyrimidyl	204 214	Y	76 80	C_{27} H_{21} O_7 N_5 S	58-1	3.5	$58.0 \\ 55.7$	3·7 3·6		· +
10.	4, 6-Dimethylpyrimidyl	210	Ŷ	76	$\begin{array}{c} C_{26} H_{20} O_7 N_6 S \\ C_{28} H_{24} O_7 N_6 S \end{array}$	$55 \cdot 4$ 57 \cdot 0	$3 \cdot 8 \\ 4 \cdot 2$	53.7 57.1	3·0 4·1	· · · ·	+
11.	2, 6-Dimethylpyrimidyl	231	ŶBr	74	$C_{28} H_{24} O_7 N_6 S$ $C_{28} H_{24} O_7 N_6 S$	57.3	4.2	$57 \cdot 1$	4.1		
12,	2, 6-Dimethoxypyrimidyl	175	Y	75	C28 H24 O, N, S	54.0	4.0	$54 \cdot 2$	3.9		
13.	5-Methyl-1, 3, 4-thiadiazol 2-yl	- 254	PY	74	$\widetilde{\mathrm{C}}_{25}^{20} \widetilde{\mathrm{H}}_{20}^{24} \widetilde{\mathrm{O}}_{7} \widetilde{\mathrm{N}}_{6} \widetilde{\mathrm{S}}_{2}$	51.9	3.1	51.7	3.4		++

TABLE 4

1-(m-Nitrophenyl)-3-(p-methylphenyl)-2-(substituted sulphonamidobenzeneazo) propane-1, 3-diones

(A:X-m-Nitro; Y-p-Methyl)

S. 1	Yo. R	м.р.	М.Р.	М.Р.	М.Р.	М.Р.	М.Р.	М.Р.	м.р.	М.Р.	Colour	Yield	Molecular formula	C (Fo	H und)	C (Req	H uired)	Antibac activ	
		°C		%		(%)	(%)	(%)	(%)	S. aureus	E. coli								
11. 12.	H Acetyl Phenyl o-Methylphenyl o-Methoxyphenyl g-Methoxyphenyl Guanidyl 4. 6-Dimethylpyrimidyl 2. 6-Dimethylpyrimidyl 2. 6-Dimethoxypyrimidyl 5-Methyl-1. 3. 4-thiadiazol- 2-yl	235 225 260 206 219 224 251 250 270 224 245 231 249	YO Y SY BYN BrY PY SBrY SPY BYN PY Y Y	74 70 71 68 69 68 65 71 75 75 75 76 76 74	$\begin{array}{c} C_{22} H_{18} O_6 N_7 S \\ C_{24} H_{20} O_7 N_4 S \\ C_{28} H_{22} O_6 N_4 S \\ C_{29} H_{24} O_6 N_4 S \\ C_{29} H_{24} O_7 N_6 S \\ C_{29} H_{24} O_7 N_6 S \\ C_{29} H_{24} O_6 N_6 S \\ C_{27} H_{21} O_6 N_6 S \\ C_{28} H_{24} O_6 N_6 S \\ C_{28} H_{24} O_6 N_6 S \\ C_{28} H_{24} O_8 N_6 S \\ C_{25} H_{20} O_6 N_6 S \\ C_{25} H_{20} O_6 N_6 S \\ C_{25} H_{20} O_6 N_6 S \\ \end{array}$	$56 \cdot 9$ $56 \cdot 5$ $62 \cdot 2$ $62 \cdot 6$ $60 \cdot 7$ $60 \cdot 8$ $54 \cdot 5$ $59 \cdot 6$ $57 \cdot 5$ $58 \cdot 8$ $58 \cdot 7$ $55 \cdot 4$ $53 \cdot 0$	$\begin{array}{c} 4 \cdot 0 \\ 4 \cdot 1 \\ 4 \cdot 0 \\ 4 \cdot 1 \\ 4 \cdot 0 \\ 4 \cdot 3 \\ 4 \cdot 0 \\ 3 \cdot 5 \\ 3 \cdot 9 \\ 4 \cdot 2 \\ 4 \cdot 2 \\ 3 \cdot 9 \\ 3 \cdot 6 \end{array}$	$56 \cdot 6 \\ 56 \cdot 7 \\ 62 \cdot 0 \\ 62 \cdot 6 \\ 60 \cdot 8 \\ 54 \cdot 3 \\ 59 \cdot 7 \\ 57 \cdot 3 \\ 58 \cdot 7 \\ 58 \cdot 7 \\ 55 \cdot 6 \\ 53 \cdot 2 \\ $	3.93.94.04.34.24.23.93.93.93.93.74.24.24.24.25.5	+++++ ++++++ + +	++++ + ++++ +								

REFERENCES

1. SAHARIA, G. S. & SHARMA, H. R., Def. Sci. J., 22, (1972), 135, 139.

2. BARNES, R. P. & DODSON, L.B., J. Amer. Chem. Soc., 65, (1943), 1585.

3. WIELAND, H., Ber., 37, (1904), 1148.

4. MARSHALL, JR., E. K., BRATTON, A. C., WHITE, H. J. & LITCHFIELD, JR., J. T., Bull. Johns Hopkins Hosp., 57, (1940), 163.

5. CROSSLEY, M. L., NORTHEY, E. H., & HULTQUIST, M. E., J. Amer. Chem. Soc., 61, (1939), 2950; 62, (1940), 372, 532, 1415.

6. ROBLIN, JB., R. O., WILLIAMS, J. H., WINNEK, P. S., & ENGLISH, J. P., J. Amer. Chem. Soc., 62, (1940), 2002.

7. GYSIN, H., U. S., 2,351,333, (1944).

8. HARTMANN, M., CUENI, F., DRUEY, J., & MEYENBURG., H. V., U. S., 2, 386, 852, 1945.

9. BIRTWELL, S., HAWORTH, E., ROSE, F. L., SWAIN, G., & VASEY, C. H., J. Chem. Soc., (1946), 491.

10. LOOP, W., & LUHRS, E., Ann., 580, (1953), 225.

11. KLOTZER, W. & BRETSCHNEIDER, H., Monatsh., 87, (1956), 136.

12. SHEN, C. W., & CHEN, H. N., J. Chinese Chem. Soc., 8, (1941), 4.

13. Rose, F. L., & Swain, G., J. Chem. Soc., (1945), 689.

14. WINNER, P. S., & FAITH, H. E., U. S. 2,380,006, (1945).

15. HUBNES, O., U. S., 2, 447, 702, (1948).

16. HARTMANN, M. & MEYENBURG, H. V., U. S., 2,435,002, (1948).

28