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The solution for viscous incompressible flow past a semi-infinite flat plate aligned with the flow are 
obtained under Oseen's approximation. The problem has been reduced to the solution of an integral 
equation which in t~irn reduoes to the solution of a Reiman Hilbert boundary value problem. The baun- 
dary value problem has, ultimately, been solved by standard teohnique as sought by Gakhov. 

One of the simplest classical problems in fluid mechanics is the flow of an incompressible viscous fluid 
past - a semi-inhite plate aligned with the flow. Under the simplification of Oseen's approximation; the 
behaviour of the drag force near the trailing edge of the plate is to be treated carefully. For low Reynold's 
number the solution of the Oseen problem is carried out by a series in powers of the Reynold% number 
and the product of powers with logerithim of t5e Reynold's number. The treatment has been explained 
in the classical work of Piercy and winny. -. 

Accurate results for the viscow flow-past a &t plate under Oseen's approximation are needed for 
numerical studies of the same problem with full Navier stokes equation. While solving the same problem 
Olmsteadl has obtained a singular integral equation involving the drag singularities along the plate. In 
general, standard Weiner-Hopf technique is employed for solving such equations. In order to avoid the 
difficulties in factorization in the Weiner-Hopf method, Olmteadl has considered a related integral equation 
which includes the obtained integral equations as a limitinq case and used Fourier transform to obtain the 
desired result. 

\ 

The author in this present note has considered the same problem as posed by Olmsteadl,2 and has 
reduced the solution of the integral equation to that of a, Reiman-Hilbert boundary value problem and 
ultimately the boundary value problem has been solved by using Plemj's. Formula and Laplace ' 
transform. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  O F  S O L U T I O N  

The viscoua flow of an incompressible fluid past a tlat plate under Oseen approximation can be deter- 
mined from the solution, with appropriate boundary condition of the equation, 

, where 
+ 
V --- v (a, y) is the velocity vector, 

-+ ' 

P, the pressure, D the uniform velocity at  W t y ,  v the khematic viscosity, p the density, i, the unit veotor 
in positive s-direction, 8 (x, y; - b, 0) the Direct delta function and the region D is the external to the 
semi-infinite plate: y = 0,O x L m. A line of concentrated horizontal force of strength Y Y 0 has as its 
projection in (z, y) plane the point (- b, 0), b > 0 directed along positive z-axis. 

l?ar the boundary condition on velocity, we require a t  inihity, 

while on the plate V=O (4) 

It follows from Olmsteed's analysis2 that for r=0 (which we consider for the present case), a solution 
of the Oseen equations (1) and (2) which satisfies the boundary condition (3) is given by, 

+- 
V ( 2 2  $4) = il U t 3 VI (2, y; *, 0) @ (x*) ax,, 
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where, 

9U 
where 4k = - the Reynolds No. KO is the modified Bessel function of second kind, the function u(xo) 

Y 

is the distribution of shearing force along the plate (hag regularities). If we employ the boundary condition- 

(4) on the plate we will mive at an integral equation for a(xQ). By employing the boundary condition 

(4) on the expression for velocity as obtained in (5) the following integ~al equation for u(x0) is obtained, 

where 

For convenience the following variables are introduced:- - 
s = kx, t = boy a (t)  = a ( ~ ) / % U  . 

The integral equation then becomes. - 
1 = f'~ ( S  - t )  a ( t )  at, o G s < 

0 
(10) 

. Our problem now is to solve the integral equation (10). In order to solve this we consider a seotiody 

1 
analytic function B' (2) which is of the order 7 or iny higher order a t  infinity, and analytic outside 

the out (0, oo) of the complex Z plane, Z= s + i$ 

~ ( t )  satisfjring the Holder conditiona. 

Let us take, 

Whioh is of the order of 11 I Z ( as 1 Z I+ eo. Throughout our analysis we s h d  consider that branoh of .\/ 2 
which is real when arg. Z = 0. We ascribe argument of Z to be Zero when Z approaches the real axis 
from the upper side and argument to be 2 n in its lower approach. The arguments of (Z - t )  are as follows: 

arg (t - 2) = - n when Z -+ s + io, t < s 1 

= o when Z + s - 40, t > S J 



B J U ~ A ~ Y A  : Solution of P& Oseen Flow 

. We denote-by & t. (s) se the limit of %he function F(Zf when app&aobe Z the red ax& in (0, oo) from 
upper side and P-(s), the limit of the function when Z approaohes the real axis from the lower side. Now 
taking the b i t s  of the function P(Z) as defined in (11) and considering the limits when Z approac hes 
the real exis from upper and low& sides we have, 

4 0 
~ - 

( s )  + 1 - S at - J sgs ( S  - t )  Kl ( 1 --t 1 )  ( t )  at 
0 0 

- 1 - " a t )  I - 
a (s)= =[--dU(s)+Jt7  - a t -  S p ( ~ - t )  K ,  ( I S - ~ I )  e t u ( t )  at 

where KO, Kl, I,, I,, have theb usual mea-s. 

Adding and subtracting' (138) a d  (13b) we get the following Reiman Hilbert bou- value problem for 
the sectionally amdytio funotion F(Z) 

1 
F + ( s )  + F - (s )  = - d , O < s < o o  (14) 

- 8 - 
and B + ( s ) - B  ( s ) = ~ ( s ) + j [ [ ~ ~ ( l s - t l ) + ~ o ( l s - t ~ ) ] ~ t ~ ( t ) d t O < s < t  o - (16) 

It is apparent from (14) that we may take 

where ultimately c -+ 0 a d  takii' A,, = 1 we om &d F + (s)  and P - (s)  

Substituting these value of P-+ (s) and l? - (s) from (16) to (16) we have, 

2 - 8 - r= IJ ( s ) +  .f k l ( l b - t l )  + I , ( l ~ - t I ) ] d - ~  u ( t)  dt 

Taking bplaoe transform4 to both sides 
- - - 
0 ($4 = 21/n 1 d p + 9  (18) 

By the inversion formula laplace transform - 
we get u ( t )  = 2t-+ e-" (19) 
Returniq to original vmiables in term8 of ;and k, we have, for a d  values of k 

Q (n)  NO(^+ n*) 
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