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The differential effects of the shock. wave in conducting fluid have been disoussed purely a
.- vector technique. While dlsousamg the vorticity and current density -generated behind the shock wave, -
: z’; eh?lsml:ieen observei that expression for the vorticity depends on the thermodynamical behavxou.r of
- Some authors*—5 have discussed the dlﬂ'erentml effects of shock waves using tensorial teohmque in
which vector quantities-vorticity and current density are obtained by the contraction of indices of tensor
quantities of order two. In the present paper vector technique method proposed by Hayess and developed
by the authors™8 has beenused. The motive behind it is that the vector quantltles can be obtained direc-
tly from the set of vector equations and the determination of the tensor quantities of higher order are not
necessary. This very  technique .is used . for the determination of the derivatives of the flow and field
parameters vorticity, current density and the curvatures of stream line and magnetic line,

: , DISCUSSION ON THE FLOW
The equatlons governing the flow of an ideal conductmg fluid are®
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where p, p, v, H and » stand for the vorticity pressure, density, velocnty vector, magnetic ﬁeld vector and
entropy respectively of the fluid under consideration.

From the thermodynammal relation of the fluid we know that - -

n=1(p, p). - | (6)
In view of the relation (5) the equation of state i.e. (4) reduces to :
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If the velocity of the shock be G (% is unit normal vector to shock surface), then the material deriva-
tive of any flow or field parameter along the normal trajectory to the shock surface is given by20
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where f is any flow or field parameter mcludmg the components of the veloclty and magnetic field
vectors,

Resolving the del operator along normal to the shock surface and in the plane of the shock surface
we have® B . : :
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where V, denotes the resolved part of 7 in the tangent plane to the Shoék Sui'face.
In view of the relatmns (7) and (8), the equstzons (l) to (4) reduce to
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where, V. and Hu stands for the norma.l components of veloe:ty a.nd magnetxc ﬁeld with respect to
shock : :
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The resolved components of (10) and (11) along the norma.l to the shock surfae% are
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Eliminating " o from (14) and (15) we get
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The resolved components of (10) and (11) along the ma.gnet;m line are :
pV, ) 4+H 3P+A H= o, (17)
and -
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Bliminating H . % from (17) and (18) we get, |
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Solving (16) and (19); we have ‘
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But in view of the equatlon (9), the equatmn (12) gwea
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DETEBMINATION OF THE DIFFERENTIAL EFFECTS OF THE SHOCK WAVE

It is well-known that the appearance of the shock wave is associated with the change in the vorticity,
current density, derivatives of the flow and field parameters and the shape of the path of the fluid
particles. For the differential effects of the shock waveit is sufficient to determine the jumps in the vorticity .
and current density, the normal derivatives of the flow and field parameters the curvatures and torsions
of the stream and magnetic lines. In this connection we have the followmg theorems :

Theorem 1
The normal derivatives of the flow a.nd ﬁeld parameters are given by
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and % —}z— is given by the equatlon (22). o : -

Proof : —Equatlons (23) and (24) can be obtained ea.sﬂy with the help of () and (12) Substltutmg the
value of from (24) and H - H from (19) in (10) and (11) respectively and solvmg them for — -5"— an %g”
we get the relatlons (26) and (26)

Theorem 2 ,
The expressions for the vorticity and current density generated behind the shock wave are given by
- BB,  PuB 4 )0 = |
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Proof :—We know from the definitions of the vorticity and current densuty veotors that?
B=V X9, (29; J = i VxH' ' (30)
In view of relation (8), the equations (29) and (30) yield ;
w——nx—a—n-+VoX”a ( : 3(31)
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Substltutmg the values from (25) and (26) in (31) and. (32) a.nd remembermg tha.t n X n =4,
we get the required equations.” e :
Theorem 3 ST .

The jumps in vorticity and current densuty across a- ma.gnetoga,sdynamw shock wave depend on the
thermodynamical behaviour of the fluid. (This theorem is in contrast to the similar theorem obtained in
_ non-conducting fluid by Truesdell” a,nd the authors®) —

Proof :—The expressmns for the vortwmy and current densﬂry calculated- above mciude ", ?av_ . But for

A
the determination of #.

Theorem 4 S
The curvatures o the stream hne and maornetxc hne behind the ma,gnetogasdynamn shock wave are

given by
Ks__,_ [{V,,E—l- ©. V) v } + V% P + 2 Va Fn. { VaE+ (v. V:)v}]{' (33)

K’B———[{ H,C+(H. V)H} +H2 D2+ 2H,,Dn {H,.c+(H v)H}] (34)
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we ha.ve to use energy equa,tmn

‘where ‘ Cv=|9v] aad- H—~|H|
Proof: —From the definition of the curvatureof a curve wehave < -
B T (3 K= o M (36)
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where, 8 and s’ denote the are length along stream line and magnetlc line respectlvely But in view of relatlon
(8) the denvatlves along stream line and magnetlc hne are
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‘ Substitutiﬁg the values_ of = and ’51:7 from rela{;ions (25) and (26)/in above éqiiatiéns we get ‘
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In view of equ.atmns (39) and (40) we get the required expressmns for K and K' as given in eqaatlons,

(33)a.nd (34).
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