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The stability of dissipative Couette flow in the presence of an axial volume current superposed by an axial uni- 
form magnetic field parallel to the axis of the rotating column has been studied. The critical Taylor numbers for 
certain wave numbers have been obtained. It is found that the critical Tajlor numbers at-which the instability 
sets-in are increased. 

The CouetteJEw zdith a pressuve gradient is  iden.ticd to flow of lubricating oil in the nawow space in. 
between, journal and bearing, whic,& is  observed in all moving parts of aircrafts. It can be used in making 
and testing the models of ships and s u b w i n e s .  Before building new type of ship, its models are mb and 
~ & d  mperimentrally. 

Chandrasekharl has studied the stability of non-dissipative Couette flow in presence of an axial rtnd a 
transverse magnetic field. In  the present paper, the problem of dissipative Couette flow in the presence of an 
axialvolume current superposed by an axial uniform magnetic field parallel to the ax& of the rotating 
column has been discussed. The problem has been restricted to the axisymmetric perturbations and small gap 
approximation. The critical Taylor numbers have been obtained numerically for different yave numbers. 

BASTO E Q U A T I O N S  

Consider the flow of an incompressible, viscous, electrically conducting fluid between two conoentrk 
rotating cylinders in the presence ot' an axial volume current and an axial uniform magnetic field. Pollowing 
Chandrasekhar2, it i$ observed that the basic equations of hydromagnetic allow the stationary solutions. 

where A and B are two constants. These constants in (1) are related to the angular velocities GI and Ba 
of the two cylinders oonfining the fluid. They are given by 

GI, 4, R,, R, being the angular velocities and radii of inner and outer cylinders respectively. The :total 
pmsure P IS given by the radial component of the momentum equation 

These solutions correspond to the unperturbed state, 

The perturbed state is described by . 
u r r J ' + ~ , ~ , h r t H , g  + h 0 , f l , + 4 ~ a e = W ~  (4) 
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The linearized wisymrnetric equations me 

3 Up 2 V - - -- P u, - - a t  r 4 " ~  r 

a "0 EL ah , ,  - 
-- a t  + ( ~ * ~ ) u r - - ( ~  dZ + hr (D* H 0 ) ) =  v ( V 2 U B - 2 )  9.2 ' (6)  

azc, P a h, 373 - -- 
at 4 9 7 ~  H ~ ~ = - -  a z . + . ~ ~ u ~ ,  . 

. . 
(7) 

a t  (8) 

+ r k , G  (G) - rur  - : r (7 )+vH(~2h~-%)9  - fs) 

a hz azc, - = H o -  + v t l v 2 h z y  
at a z (10) 

. . 
' a,u, - Ur a Uz 

+r + -z- = 0 )  a r (11) 

a hr h, a hz - +  - +-- = o ,  
a r r . a z  

where 
a2 1 a a2 d + =.- and D, EE - 

1 
V 2 =  57 + =  dr + T -  

We assume that the first-order variations in all the physical quantities are of the form 

f (r).exp. (i& + pt). (13) 
aqns. (5) to (12) reduce to - . - .  , 

v B ( ~ ~ *  --lo'-- . (17) 

v b ( ~ ~ t  - k2 - e, Y~ he + (, d V  - - Y ; ) h T = - ~ o i k ~ e ,  (18) 

v a ( ~ , ~  -P- (19) 

D,u, I= - i k y ;  "D,h,= --ikhd. 
I 

(20) 
From (14), (16) and (20) we obtain _ -  *. - - 

p Hoik 2pIcaHehe 2Vk2ue 
(DD* -+ P-- ' ) ( D D * - W ~ . +  a' - ( D D * - A ~ ) ~  + 4.npvr - - rv (21) 

eqns. (16)' (17)) (18) and (21) aref~ewritten as - .  

i (DD, -'a2 -- of.zcg. + p . Ho &!ahe 2 ';u S2 a 2  h, - 2 AdZ u, 
+ 4 r p v  

- 
4 m p v  9 v (22) 
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where 

If the gap ia narrow, (24) reduces to 
H, adhe 

(Da-02-eu)  he =- 
"H (2.7) 

From (22) with tl.Le helplaf (23) and (27) we obtain 

- a - ( D $ - 0 2 - 0 )  + ( P - a s - - € 0 )  A, = 
- 

1-1 [ ( ~ - a . - e u ) +  - 
i A (@) 

- - ,  . . where -\ 
I 

" l2 av p H , r + , .  =- 
= 4 n p v v H  Hod ' 

, (99) ' 
- .  

H th' 2Adahe l 

and A . - is replaced by h. 
YE! V 

Again from (25) ueing (23) alld (27), we get 

4-d4 is the Taylor inmber for narrow gaps. w h ~ 3 . T  = - -- - - *". . v2 

s O j , , U T I O N  O F  T H E  C H A I $ A C T E R I T I C  V A L U E  P R O B L E H  
F O R  T H E  C A S E  p > O  A N D  0 x 0  

 he equations to be solved are 

[ ( IP-a2)2+Qa,  ( ~ 2 - d ) h ~ = - - i  ( P - a , ) + a  Y I I (33) 
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and 
[(D2 - + (D2 -1 as)% = - iFa2 Y'[D' - + i h ' ] ~  (34) 

where 

A VasrktimZ Pvirzciple 
The problem presented by (33) and (34) with the boundary conditions can be formulated in terms of 

a variational principle. After multiplying (34) by -4 [(D2 - a2) + iL]ur and integrating over the range 
of 5 we obtain 

-4 \ 
After one or more integration by parts (in which the integrated parts vanish on account of boundary 

conditions), we find that both sides of (36) can be brought to positive definite forms and the result ie 

The oharactefistio values of which is a certain ratio of two positive de6nite int~grals, represent the 
extremal values as shown by (37). 

The critical Tqlor n q b e r  T for the onset of instability (for a given 8) represents the absolute 
minimum. . 

Here (33) and (34) are solved under the conditions (i) o = 0, (ii) p > 0. When u = 0, the mar- 
ginal state ia sbtiomry and for p > 0, it is established that the occurrence of overstability is effectively 

[Chan&asekha$]. In both the cases, at  the onset of instability a stationary pattern of motion 
prevails, this indicates that the principle of exchange of stability is valid. If p < 0, the governing eqns. 
(33) and (34) will l e d  to rapidly increasing errors and the passibility of overstability occurring cannot be 
excluded. But as we are considering the solutions for p > 0 SO the overstability would seem .unlikely. 

h e  standard forms of these solutions are taken in the form of two orthogonal functionsz. 

cosh A, x - cos Am 5 . C m  (5) = 
cos+X, ' cosh 4 Am 

I sinh % - sin pm , 
S m  (4 = sinh 4 pm sin + cl, 

where & and (m = 1, 2, 3 ,  . . . . . . . .) are the positive roots of the eqns. 

1 1 ' 1 1 
t a d  - ~ + t a ; n -  X = O  and coth- p-cot  --p=O . 

2 2 2 2 (40) 
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The functions 0, ( x )  and 8, (3) satisfy the orthogonality relations. ‘ 1  

C, ( x )  C, ( x )  dx = S,(x) S,(x) & = 6, 

-& . -4 i 
and 

i cm(j?j S,(x) ax = 0 (42) 

-8 
Considering only even solutions, we expand ur in terms of the fun~tions C, ; thus 

UV = z, A m  C m  ( 5 )  (43): 
where ihe summation over m m y  be coniidered as running from 1 to a. The comespoiding expansion 
for he is given by 

b = Z m  A m  hem ( l ) ,  (44) 
where ( 1 [ )  is the solution of 

F(Da - a2)2 $. &a2] (D2 - a2) hern ( 5 )  = - i f(D2 - a2) + iL ] C, ( 5 )  (45) , 

which satisfy the boundary condition on hem. 
~ h b  general solution of (45) which is even can be written in th;e form 

(iaa +- L - i A>) cosh A, 5 (iaa + L + iha) cos A, 5 tlik 
he" = ' + [(h2 - a2)' + QaPl ( A 2  - a2) cash t h, [ (Amz + a2) + QU. j (Am* + aa) 'COS + 

+ A'"' cash. q~ 5 + A('") co$h q2 5 + hcm) W& q, 5 , (46) 
where /3Jm) , Nm) , bJm) - are constante of integration and 

8 -  2 q1 - a + i o q Q ,  q22 3 aa -uct/g, q,a = a8 (47) , 

are the roots of 
[(q2-a2)2 + Qa2] (q2-a2) = O .  (48) 

Without loss of generality, we may write 

where 

, a  

It is apparent that PJm) and are complex conjugates. 
An identikg which fonowa from (48) is 

r, = 1 

I 
I L4, - q14 i2 1 Am4 - qS4 1 (61) 

Using (47) we obtain 

( A 2  - &',a) '(Am4 - qd) = (Am4 - a4 4- a2 Q 71 2 ha ( A 2  -- a4) . (82) 
1 
1 

If we let g, = - (Am4 - a* + Qua) , 
a v ' q  (53) 

Then (k4 - q?,d = (9, F 2 iica) a& (Amp -a41 , (64) 
~n altmative expression for l', is given by 

I 
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With the help of the foregoing relations and definitions, the silution (46) can be rewritten for h#@ in * .  the 
form < 

I ' 
/ 

. .  . 
where 

With the help of (47) we obtain Gtn from (66) 

G,,, .T (D2 - ,a) It$" 

= r. [(q L4 - a2 A') 0, (I) + u'-a2 B') cm" (01 + (PI(" wsh ql I -&(") msh q2 0. (69) 

We observe that 

[(D2 - asla + (D2 - a2) Cm (I) = ( h 4  + 3 d 4 Qa2) Cmw (6) -a2 (3 Am4 + a4 + @') c m  ( t )  (60) 

Substituting the expansion for ec, and hem in (34) we obtain 

' -~&v'~J*/IP) o o s L q a t ( a . \ / ~ - N ~ =  0 .  (61) 

xultiplyiq (61) by Cs ((j and int@rating over the range C and m a g  nse of thesorthogonality 
of C-fUnctions and with- the further following defuu'tione - 

(62) 

-a 
and 

6 

We obtain the required wuls,r determinant for . . , 

1 1 ,I 7 [ ( h 4  + 3 a4 + Q a2) Xmn - d (3 A 2  + d + Q a%) 
T a2 ] + r . [ i { ~ ~ ( ~ + ,  . 

- idg  ad^ + warn) ( a h  a t / c n  (6) ) 4 (43 - n? ~ ~ ( ~ l . ( . d . b  q2 i/cn ) f I I = 0.  (64) 
_ ?  . 

-Ei$ &mentary calculations we find , i 

" 2  
(Cma' C," - C," C,,,')r = +"(a# N) \ . Xn# = 

Am4 - An? .,.- I 

1 ,  
I ,> , * .  

e 4 -  4 = f (615) 
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where C,,," (3) = 2 A,?a a ~ d  CmH' (4) = 2 Am3 fa,$+ Am . (67) 

The last line of (64) has been simplified with the help of (51) and (53) and can be rewritten as 

'The second line of (64) has been simplified with the help of (57) and its real part can be rewritten as 

where 

M = 2a2 ( N L  + a2 Q) (a4 - Am4). I (71) 
'The s e d a r  eqn takes the form 

I 

- 4 a2 Q I'. (A4,, -,a4) P do re ((b + 2 a2) p im)  + N re (ign - 2 a2) &(4 

T H E  B O U N D A R Y  C O N D I T I O N S  

'The boundary conditions (1) G, - 0 , (2) (D2 - a2) G, = 0 , for S = F 4 are satisfied for both the 
a s e s  (i) Non-conducting walls, (ii) Conducting walls. Thing (59) we obtain 

BIM e s k  4 gt pl f i W i m ? d  4 g% = .*. [ (A'. y a2. B') Cmm (4) ] , 
ado- . 

pl(m) ~h 4 gl+ pa(,) ~h 4 q2 = --&- [ B' (?m4 + a4) -2 a2 A' c m w  (4) , . . I (73) 

where A' and B' are defined in (57). 

From (73) we find 81(m) 
(4 91 r m  CmW'(f) A' a (i 4~ - 2 a, + B' (h 4+ a4 - i do) fll(m) = 

2a2Q-. 
.and is its complex conjugate. 

With the help of (7% the la& line of (72)' takes the form 



Dm. &I. J., Vot. 24, Ocrro~m 1974 

where Zm,  = C," ( 4 )  Cn'" (8)  r ( 7 6 )  

- -cmM ( t )  Onw ($1 [an (pl tanh t + y i m  (qlmhf g l ) ]  &an - ( 7 7 )  

u = 2 a 2 c 2 ( a  d i J - i V ) - g a c 1 ( a  dQ+ N ) ,  ( 7 8 1  

Therefore, ( 7 2 )  takes the final form 

1 I I I ~ [ ( ~ ~ + + ~ ~ + Q ~ ~ ) x ~ - ~ ~ ( ~ ~ . ~ + ~ ~ + Q ~ ~ ) S ~ ~  + r m ( ~ ~ , n n $ ~ ~ m , , ) -  I 

- 2 F m  rtt ( L 4  - a 4 )  ( z m n  j- z m n )  I 1 = 0 , (82) . - 
where R and M are defined in ( 7 b )  and ( 7 1 ) .  

We may note that the real and imaginary parts of q 1  tanh 4 ql which occur io the expression for Cmb 
arb given by 

q sinh ctl - a, sin a, 
" ( q l t d t q l ) =  CDshal+CDs(L1 9 (83) 

a, sinh crl + al clin a, 
;.a (q l ta *  3 9 )  ' 

I 

ooahcc,+coscr, ' (84) 

where q and u2 are defined in (50). 

N U M E R I C A L  R E S U L T S  

The (82) has been solvedfor a number of values of q and Q, The minimum, value of thecharac- 
teristic roots has been determined for both the cwes. The result,s of calculations are summarized in 

I Table 1. 

TABLB 1 

If A - - 1, then 
( I +  P)Q; - , 

&mnd approximation 
Q a RIA __I . . : .  . - 

T Corresponding ii 
of Chmdr&sek& 

* 
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T H E  A S Y M P T O T I C  B E H A V I O U R  F O R  &-+a 

Let a2 -t 0 while Q aa + a finite limit as Q -t a . (86) 

On examining the original differential eqns (33) and (34), we have the following asymptotic behaviours : 

, Q a 2 + Q ,  and T a 2 +  T, as Q + oo a n d a + O .  (fh 
The differential eqns. take the limiting forms 

( D 4 +  Q, )  D2he = - i ( D 2  +i&')&, (87) 

where L' = &, R,  , (89) 

while the boundary conditions are unaffected and remain the same. To determine the correct 
asymptotic behaviours of the critical Taylor number and the associated wave number for Q -+ oo , we 
must solve (87) and (88) together with the proper boundary conditions. The problem can be solved 
exactly in the s a m  manner of article (3 )  by putting a2 = 0 in various expressions except when it occurs 
in the combinatiom of Qa2 and Ta2; Ohey are then replaced by Q& and T ,  respectively. By defining 
the various quantities in $he limit, (50), (53) and (55) become 

with these definitions, the limiting form of the secular eqn. (82) is 

where c m n  = - cn" (4) CmN (4) [y' im (ql t d  4 q,)] , (93) 

Y' = ~ n  ~ 2 '  (N' + .~/QZ) , (94) 

~ a '  = Am4 (Xne + Qoc ) (L' + 2/iJl), (95) 

K' = - N'L' [(b4) (b4 $ Q , ) I  + h8 (Q, + A , ~ ) .  (96) 

In  (93), im (ql tan q,) must be evaluated in accordance with (84). The seculw eqn. (92) has been 
solved in the second approximstion for number of Q ,  and the minimum value of P, has been deter- 
mined for both the oases. The results of c~1cdation.s are summarized in Table 2. 

Baond approximation 

Rao T m  Corresponding 
value of css 

per Chandrasekhar 




