THE STABILITY OF DISSIi’ATIVE COUETTE FLOW IN HYDROMAGNETIES

JA1 PaL .
‘ Universiéy of Jodhpur, Fodhpur ' " o
& : - , o
, K. M, Srivastava e '
Institute of Plasma Physics, Julich, W. Germany o
(RBeceived 16 August 1972; revised 9 August 1973) e r

~
The stability of dissipative Couette flow in the presence of an axial volume current superposed by an axial uni-
form magnetic field parallel to the axis of the rotating column has been studied. The critical Taylor numbers for

certain wave numbers have been obtained. It is found that the critical Taylor numbers at which the instability
sets-in are increased; - L

The Couette flow with a pressure gradient is identical to flow of lubricating oil in the narrow space in
between journal and bearing, which is observed in all maving parts of acrcrafis. It .can be used. in making
and testing the models of ships and submarines. Before building new lype of ship, its models are made and
tested experimentally. '

_ Chandrasekhar! has studied the stability of non-dissipative Couette flow in presence of an axial and a
transverse magnetic field. In the present paper, the problem of dissipative Couette flowin the presence of an
axial volume current superposed by an axial uniform magnetic field parallel to the axis of the rotating
column has been discussed. The problem has been restricted to the axisymmetric perturbations and small gap
approximation. The critical Taylor numbers have been obtained numerically for different wave numbers.

BASIC EQUATIONS

Consider the flow of an incompressible, viscous, electrically conducting fluid between two concentric
rotating oylinders in the presence of an axial volume current and an axial uniform magnetic field. Following
Chandrasekhar?, it is observed that the basic equations of hydromagnetic allow the stationary solutions.

Ur=U,=_0, Ua..'—_‘v =AT+B/’T,
Ho=0, H=H,, Hy=Ho()=2ar, (1)

where 4 and B are two constants. These constants in (1) are related to the angular velocities 2, and 2,
of the two cylinders confining the fluid. They are given by

1— g RA(1— )
. 2 - P4 — 1
A Ql VH 1 VH2 3 B = 91- 1 - VH2 ’

- 2, R, ‘
”—‘.QI’VH:*R—;' ) ‘ (2)

Q,, 2,, Ry; R, being the angular velocities and radii of inner and outer cylinders respectively. The -total
pressure P is given by the radial component of the momentum equation ‘

dP V2 11 . Hoz
— @ = T_+«4ﬂ,,(9*' +T)-

(3)
These solutions correspond to the unperturbed state,
The perturbed state is described by \ P

|  un, Vg, by Hy A By, Hy o+ By, @ (= 8m), @
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quations are ‘
2 Hy hy

T (e - Mk (G,
2 +<D*V>uf‘ 4”,, {Ho 20 + (0, Hp) } = 'v(vzuo-»%)’

- a;:,'_’_ oy o "aaf“ -_'_,ﬁ "Hvzu"

Cem e <v2k~-7?—)-4-

B2 (D) 5 (%) ().
%—*—m aau*+vav b ol
B LS
aahr'-+ TG

where o N ‘ :

We assume that the first-order variations in all t_he physmal quantities are of the form

-eqns. (b) to.(12) reduce to-

o f (r)'exp.’(z'kz + pt).
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(nr e 2\ wHyikh, = 2V 2uHyhy
v (DD* k2 — 1/) Uy + 471‘[) r hg —_— '—“———’*"r ——D«'B, \
\ o uHyik by _ W (2Hgh Y\ .
v (DD,,‘----Ic2 -——%) Y -+ —40—7713_ (D*V)vur+4—"é'(+,,l)—')f=0,
A A y.szk o ‘
p (D= B g B gy
vol DDy — 2 — L) by = — H, ik
B * - Vmp r - 0 "
P (Vv v ‘ :
. VH(DD*—kz——‘ ‘;;)’Lg;—l—(d'r )k*-—-H'&k’uo,
T A T
',VH-D*D,_k_ o __——szu,,
Dy, = — ik ; D*h_——zkk g
From (14), (16) and (20) we obtain o
: [L 'I/k 2 [.Lk Hokg 27]62’1.59
| (DD* —kz-—) (DD*-—kﬁ)u,-}« ok DD ) 1, + - -
eqns. (15) {17), (18) and (21) are l;ewntten as I Cor
Ay e - pHyidaky = 2°pQd2h, - ZAdzu,
v _ (D,D* ot - a)'uil_ Cdmpv dmwpv v ?

a -
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(9)
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(15)
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(DD, — a® — eo) by = — Homu'\ ’
N co L SR
- 2B d*h,  Hyidau
T S '_ Lo W04
(DDy — 02 —eo) by =3 > o, |
) DDy —a) o BB o BBy
(DDy — a*— ¢) (DDy —a?) % + - Ty (DD‘ aa)h + Topr =
2 a3 o
- 222 af1—a—wi]w.
where o | )
_r—=R 2 - o e v
: d s k— d ’ P""'ﬁi‘, d—Rs_“Rl, o= v y- € = ";‘..‘
If the gap is narrow, (24) reduces to ' T .
(Dz——ﬁ—w) ky = H“ adiiy
L4

From (22) with the help‘\of (23) and (27) we obtam -
o [(DZ--—az——ea) (D3~—a’——o) + Qaz] (D?— a2 —ec) by =

i

i [(D?—-a“—ea)+ Ll @]*f-;‘

- o wHR® Qay
B N Q= 41rpva R_—Hod )
, . o
/L N 248, repls.ced by he. -
Vg . v v
Again from (25) using (23) and (27), we get

[(m';'aze- o) (D® —a? — o) - Qaz] (D% — a?)

— .,mz[(m—-a‘-’-ea) a—T=np + XE ](D*-—d*-—«a) By »

. ” L » ~ _,:‘ ,\Q 4 '
where I = — ._%—4-;-2 1@ is the Taylor number’ for narrow gaps.

 SOLUTION OF THE CHARACTERITIC VALUE PROBLEM
FOR THE CASE p>0 AND o0=0

; : * _ 1
Lot - T=5 01+l
and | =D —a)kg. /'

The equations to be solved are

[(m—a2)= + Qaz] (D — ) g = — i [(D2 —a?) 4 zL]

@9

(24)

@)
(26)

@

(28)

@)

- (30)

(81

(32)

(33)
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and .
[(132 — e+ .Qaz] (D22 oAy = — i [(1)2 — ) iN]G , @34
where - o -
QR QR
L = X", =", . (36
4 Yoaaea (#5)

A Variational Principle . .

. The problem presented by (33) and (34) ﬁﬁth the boundary‘conditions can be formulated in terms of
a variational principle. After multiplying (34) by —i [ (D? — @?) +- iL]u, and integrating over the range
of ¢ we.obtain ) } i : ’

| f; [ {(Da_aé)w Q;ﬁ}" (D% — az)m{ (D* — a?) 4 iL }u ]d; |

;=#zr'a2f[{(z)z;a2) +<e'z'v}a{<z>2‘—a"’)w+Q«#G}]d': .' - (36)

After one or more integration by parts (in which the integrated parts vanish on accoun\t of boundary
conditions), we find that both sides of (36) can be brought to positive definite forms and.the result is

3 ; S |

f [ (DA )2 -+ da® (DPu,)? + 6a8(D? u)* 4 4a¥Duw)? L § (D —a? -+ Qa2} X - |
.—% ) .
X {(D? — a®yuyju, ] a

Nl
I

L (37)

@ J' [(ps )2 4 202 (D G)? - a*(3a? + Q@ + 1) (DG)? + a4(Q + a?) 62
P | |

i { DGD® G + 22 (DG)? - Dhy DG + a2 Iy m] a.
The characteristic values of 7 which is a certain ratio of two positive definite intggrals,.repr;sent ﬂ;e
extremal values as shown by (37). i

The critical Taylor number T for the onset of instability (for a given @) represents the absolute

Here (33) and (34) are solved under the conditions (i) ¢ = 0, (ii) p > 0. When o = 0, the mar-
ginal state is stationary and for p > 0, it is established that the occurrence of overstability is effectively
excluded [Chandrasekhar3]. Tn both the cases, at the onset of instability a stationary pattern of motion
prevails, this indicates that the principle of exchange of stability is valid. If p < 0, the governing eqns.
(33) and (34) will lead to rapidly increasing errors and the possibility of overstability oceurTing cannot be
excluded. But as we are considering the solutions for p > 0 so the overstability would seem unlikely.

The standard forms of these solutions are taken in the form of two orthogonal functions?,

_ cosh A @ coS A T
) __ sinh pn 2 - sin up o _ ' _
| Sn @) = 2B 1 o E0E (39)
where Ay and pm (m = 1,2,8, ........ ) are the positive roots of the eqns.
' S D 1 1 1 -
ta§h7h+tan—§—A—O andcoth—zf M—-C()‘t-—2~y'=0.‘ (40)
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The functlons O (cc) and S (a;) sa.tlsfy the orthogonahty relamons

. Y . ' :
f 0 (@) Cn(e) do = j Sn(2) S,.(a:) i = B W
-t . L -4 o '
and S ‘
4 PR \

[ oueh S aw =00 (42)
. —% ‘ ' l R

Considering only even solutions, we expand %, in terms of the functions Cy, ; thus . » :
B U =ZpAnCu(l), . y L (43)

. where the summation over m may be cons1dered as rlmnmg from 1t0 0. The correspond_mg expancuon
. for hg is given by

ho=Zndntgm (), N 7))
where hg”‘ ({) is the solution of : - ’
o o KD —a?)? + Qa?) (D? ""“2) kg™ ({) = —¢ f ___az) +iLl0n(8) (45)
which satisfy the boundary condition on %g™. :
The general solution of (45) which is even can be written in the form

(602 4 L — i Mad) cosh A, ¢ +' (0% 4 L + i2,8) 008 Ay ¢ _E n

. hﬂm = [ 2——0,2)2—{—@(12] (A 2% coshl A, [(A 2+az)+Qa2](Ama—1-dz)GOS%/\m +
, ’ _ 4 Bi™ cosh ¢; ¢ + B,™ cosh g, £ - By™ cosh 95 ¢, - (46)
" where Bim , By | /33("') are constants of mtegra.tlon a.nd , , L
o @2 =a®+ W'\/Q 9? = a? "‘W“\/Q %' = : : (4N
are the roots of - ,
_ T (q2 — @) + Qa“’] (¢ — aZ) =0. ' (48)
Without loss of generality, we may write . :
%+ oty 5 g = oy — @'«a , ' )
where ‘ “ o ' D
ai=j[_—%—‘/a4+0a2+'“72]*,%=[%-\/a4+0d=—_“2.’_]*i )

Tt is apparent that B,(™ and B,(™ are complex conjug;t os.
An identity ‘which follows from (48) is -
v -

-rm — ‘ ; e ;
IR e ) | (51)

Usmg (47) we obta.m
(Xm — ¢1%) ('\m — ) = (}‘m —at - a? Q F 2 iad \/Q) (At~ a‘) . (52)
Ifwolet | . Yn a\/Q (S —at o Qay), (53)
Then . (A — ¢ ,2> = (gn F 2 i) 0/ (Mn —a¥ . (54)
An alternative expressmn for I, is given by ' ‘ |

' . 1 ‘

o S Bt e, (55)
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}Nlth the help of the foregomg rela.tlons a.nd deﬁmtlons the solutmn (46) can be rewrltten for hg"! in the
orm : o
hg? =T, [4' Cn ({) + B' m (C)] -+ ﬁl(m) °°5h 91§ + ﬁz(m) cosh 92§ + ﬂa(m) °°Sh &, (56)

where

A= [0+ Q)—A ! (Qa? + M] +L(3a2 Am4+ ® +Qat), (57)
B =2a‘4‘@(a" Am“) +L()‘m4+3a4+Qaz)la ' o

Vo BOm o cohA(D) | 0080 (D) |
' () = “g - _A,,,.z(msh“m - T ) (58)

With the help of (47) we obtain G, from (56)
i = (D — o) g™ o | ,
= LB Mt b 4) O (§) + (40 B) O (0] + ia/Q (B ooshy L — B cosh ). 2
'We observe that o
[(D? —a?)? 4+ Qa?] (D*—a?) O ({) = (An® + 30t 4 Qa?) O, (1) — a2 (3 AnS 0t + Qa’) 0,,. ({) (60)
Substituting the expansion for u, and hg"‘ in (34) we obtam , ‘

Tla [zmA {(Am + 368 4 Qo) O” (8) — 0% (8 2t 0t + Qaﬂ)om(c>}]+wm4 I x

[{A'(A ¢4 b — iNad) + B' Ay 4(N—-2a=)}om )+ {B’(A ‘—{—a‘—zNaa) +

R AGN —w)} 0, <:)] o/ fw’ coshq, £ (a4/@ + N) —

u’»\/@‘“ﬁ ) cosh g £ (a/Q — _M=0. s , (61)

Multlplymg (61) by COa () and mtegra.tmg over the range { and makmg use. of the orthogonality
property of C-functlons and with the further followmg definitions”- - -

N g f AT @)
i , |
,(cosh qQ/C. (l)) = fC,. ({)coshgidf.. . . ' (63)

We obtam the requned secular determmant for T B e o
g | owt 304 + Q@) Xmn — a* (3 Mt -+ '+ Qat) 8.,.,.] I [@'{A{(xmq; :

‘ + at —iNa?) 4+ B’ A, ‘(zN—-2a’)} 8,,,,. ) {B’ a4+ a‘—zNa’)+A’(zN——2a’)}X,,.]
iyl [(a\/% 20 i (oooh 00108 )+ VG0 A aivhn 8101 Jlii=0.

By ‘elementary calculations we find - . IR
' 2

s Xmn = W4 (G m 0 L qu o ,f)z - *\(m#n) )
1 R o LT e ey S

X
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and ‘ | R
o T TR o A -
( cosh qz/O (Z) ) = m' [ (72) COSh % 9— C (?) g sinh % q ] . (66)

where 0,,. ({;) = 2 /\m2 and C " (%) = 2 Ams ta.nh % Xip o ) - (67)
The last line of (64) has been s1mphﬁed w1th the help of (81) and. (53) and can ‘be rewritten as

—ia g [(“\/Q+ N) gy (oosh @ {/C‘,{({))] + (e 4/§ =) gy ( cosh g, ¢/C,, (C))
= —tagQr, (A4—-a4)[ [avGre (g + 2a8) B + N 1o “9" - 2“2) B‘M}

(O ) coth 4, — € B smhm] | S ®

‘The second lme of (64) ha.s been simplified with the help of (57) and its rea.l part can be rewntten as
I {A'(/\‘+a4—zNa2)+B' (zN—2a2)} mn+@{B'(A4+a4——zNa2)+
+ A’ N —2a?) } Xm,. = Iy (K 8,, + MX,,,,,) R ' ]{:(69)
where o ' v
K = ,NL{ (@ 4 Qy— Mot (Qa2+>~ 9 }+ ) S(Qa’+h € 4 30t A, (ot —

— Apt) — a0 (ab2 +Q, ) (70)
M = 2a2 (NL + a2 Q) (a4—-/\,,.4) o, N (4
The secular eqn takes the form » : .

A1 | (et 4730 4008 Xt @ ot -+t £ Qo sm.] 4 T (K Bm ot M Xy} —
400 Q I 0% — a9 [ { V@ re g, + 207 B + N re (i, — 308 . } :
SO Moo dgi— 0 aismbig|11=0. (72)

THE BOUNDARY GONDITIONS :

'The boundary condltlons (1) Gp =0, @) (D*—a?) G, =0, for { = F Lare satisfied for both the
wcases (i) Non-condu.ctlng walls, (i1) Conductmg walls, Usmg (59) we obtain

B osh s - Butlooh 4, = ~—f;'i_- [ At B) O @]

,Bl(m)cosh% o+ ,ea(mmosh;qz_ ;;Q [B’ (A 4+a4) —2a A’]C @, (13)
where A’ and B’ are defined in (57 ). '
From (73) we ﬁnd ﬁl("')

B = sefv‘h(%)zqzzlgno (%)‘n[A'a(?'\/6:—20»)‘—[-8'()\,.,.4-{-a‘——ia"\/@)] (74).

and B,(m) is its c&mplex cbn]uga.te
With the help of (74),. the last line of (72)' takes the form -
—2 rnr, (An4 "5'-“4) (Zmn + 2""‘)" . : (75)'
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where S Zon= O B C" B, | (76)

Zmn = — O’ (}) G (3) [oz re (g, tanh } g;) -+ y im (g, banh } qo] ; o
& = 2at o, (a /G — N) —gncy(a /G + D), - (18)
y=20a@V/i—Mtna@vi+y, (19
1 =2a3«\/Q()\m — ab) (L—{-a\/Q), ’ L (80)
¢ = [a6 (@ = Q) - Mt (0t Qi — 209 ] @vg+1L). (81)

Therefore, (72) ta.kes the final form |
I l —— [(Am + 304+ Qat) Xom ~ 0 (3 a0 + Qat) sm ] 4T (K Sum + M Xa) —

: [ i
—‘2Pmpn()\n4”—a4) (Zmn"i"zfmn)l"—oi - - ‘ ’ L (82)
where K and M are defined in (70) and (71). . ' ' ~ - o
We may note that the real and i 1mag1nary parts of ¢; tanh } ¢; which oceur in the expression for Z',m,
are given by

. o oulsmhacl oy 8in o . ’ :
re (g, tanh § ¢,) oo F oondy | (83)
: - % sinh o & -+ o sin % | ' K ' ,
- m(g tanh} g)) = — coeh @, -t 008 o 3 (84)
- -where o, and «; are deﬁned in (50). |
| NUMERICAL RESULTS SRR RS

The (82) has been solved for a number of values of g and @, The minimum value of the charac-
teristic roots 7 has been determined for both the cases. The results of calculations are summarized i in

‘Table 1.

Tasie 1

Cnmc.?L T@imon NUMBERS AND RELATED CONSTANTS FOR DIFFERENT VALUES OF @ - «
Ifﬁm=--‘—-l‘,thenb | -
. Second .approxi;ﬁagion
Q . a . RjA —
7 Corresponding 7'

) . . of Chandrasekhar

5 320  —0-8893 33365108 2-1853x10°
i 380 0007 2-0986x108  2-6024x108
20 3.40 —0-5023 50288 x 105 © 3-8093 108
50 345 —0-3702 2-9662 x 108 7-99§6x 10°
100 - . 3-35 —0-3608° | 3.53712x105 . 17678 x 108
36 . 268 —0-2364 9-2827 x 108 3-9657 X 108
100 169 07187 10-3 41858 108 1-0821 x 106
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THE ASYMPTOTIC BEHAVIOUR FOR @~ o

Let 420 while Qa? > a finite limit as @ > oo . - (89)
On examining the original differential eqns (33) and (34), we have the following asymptotic behaviours :
Qd2—>Qw and Pa2 > T, asQ ~ coand a > 0. ) (8b)
The differential eqns. take the limiting forms .

(D4 Q) D2 hg = —i (D +iL') u, | @n

(DA 4+ Q) D?up = —iT, (D* +iN')D?hg, ©(88)

where . L'=@Q,R,, ' ‘ (89)
N =29, R, T—ﬁ)’ﬁl— (90)

while the boundary conditions are unaffected and remain the same, To determine the correct
asymptotic behaviours of the critical Taylor number and the associated wave number for @ - oo , we
must solve (87) and (83) together with the proper boundary conditions. The problem can be solved
exactly in the same manner of article (3) by putting a? = 0 in various expressions except when it ocours
in the combinations of ‘Qa? and Ta?; they are then replaced by @1, and T, respectively. By defining
the various quantities in the limit, (50), (53) and (55) become ‘

0. \% - ) ,
Uy = Gy = ("‘ono—) > 9m = /\\/%——Q:O: I}m=gm2Qoo Am‘l', (91)
with these definitions, the limiting form of the secular eqn. (82) is |
1 1 K’ Smn 2 S P
U, Q) Fet g (0 — e ) 1= o
- where Zum =—Ca" (}) Cn" () [¥"im (41 tanh § ¢,)], o (93)
- Y =0 (N +VQ,), o ) (94)
&' = Mt Ot + Q) (L' + /), - (95)
K = —N'L [ Mt 4 Q)] + 2 (@ + M) - (96)

In (93), 4m (g1 tan } ¢;) must be evaluated in accordance with (84). The secular eqa. (92) has been |
solved in the second approximation for number of @, and the minimum value of T, has been deter-
mined for both the cases, The results of calculations are summarized in Table 2.

L

TABLE 2

CriTroAL TAYLOR NUMBERS AND BELATED CONSTANTS FOE DIFFERENT VALUES OF @

' _ Second approximation
i
Qoo R Too Corresponding
: value of T as
per Chandrasekhar
225 —0-4771 2-9891 x 105 2:4122 x 104
2700 —0+7045 x 10—8 1-2042 x 107 T 1-2184 % 108
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The conespondmg asymptoim bahavmurs a.re" ‘ . ;",: ;. .-

: i’a:. @, =28,7—1950,|T = 1073 (o Por Chandroseio) ]

\/_"

wd e , 150 asQ—»w, e e e
P i_‘g;, ’=-,.  2700, 7= 4459 99, [ . '451"}27.'Q,”(fa;:&*-p‘élf"Chaﬁiir's;sekhar)]_‘--/:;'x;‘;,_.'

P

. St - LA e

Cea

It is observed that the cntlcaf’l‘aylor numbers in the presence of ;an axial volume current supér-
‘ posed by an axxal umi'orm mﬁ.gnetw field at whlch the msta,blhty sets-in,’ are mcreased
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