SUFFICIENT CONDITIONS FOR STABILITY OF COMPLETELY CONFINED FLUIDS IN
PRESENCE OF MAGNETIC FIELD
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Effect of magnetlc field .on the electrically conductrng incompressible fluid, completely confined masmooth
container of arbitrary shape, has been studied. The temperature gradlent concentration gra.dlents and
time independent magnetic field are assumed to act parallel to' body forece. Two Rayleigh numbers i.e.
Modified Rayleigh number M- and critical Raylelgh number Eo have been obtamed It is found that
instability occursif ME < Re. ,

NOTATIONS

- Amnp) Coefﬁclent in- Fourier series
Bmnp | A

Complex space, concentration
Contribution to body force per umt d1sturbanc‘ .
: _ Hunction space - :
. - Diffusivity :
: - Inverse of Prandtl number
Kinematic viscosity
Magnetic diffusivity
- Number of solvents - -
‘Mode numbers in Fourier series
Magnetic pressure number
Gradient
Change of density per umt gra.dlent : .
Disturbance . .. = ‘ , : ‘ S
‘Complex eigenvalue- ‘ ’
At origin
~Complex elgenvalue
Initial rest state
Cartisian 2. (y-+1), d1mens1onal parametrlc space
v/1 :

The rest notations used in the problem have got its usual meanings.
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The stablhty of lammar flows has been studied by many researchers Lord Raylelghl has studled ‘
theoretically the laminar flows. Chandrasekhar? has studied the . problcm of stability of these flows in
details. He extended his studies to include the effect of magnetic field on stability of fluids. D. Pnueli
ot al have investigated the sufficient condition for stability of a fluid completely confined in a closed
container of arbltrary shape The concentratlon and temperature gradients act, on the fluid, - parallel to
body force g that is z-axis.

In thls paper we have generahsed the stablhty cond1t10n3 in presence of at1me 1ndependent magnetlc
field H , ,
BASIC EQUATION

- Let H (0,0 H, ,,) be the uniform: magnetlc field acting on an electrlcally conductmg 1ncompresslb1e
fluid parallel to z-axis. p, the magnetic permeablhty is-taken to be constan’c The basic equations for tem-
perature, concentration and M.H.D. flow are g1ven by ,
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where
‘ o L P (H)2
| . PT“T+ "2 |
e .(—*‘ — 7 v2) =V X (0% H) R 3
Dt—— " pj/P-——O’ ]—1 2 3 ooooo 0 . c (5)‘
A constant temperature gradrent is set in the ﬁuld parallel to z-axis i. e " 4
‘ o A 3T o S S " &y ) r' :
vr—k———e | L ®

A dens1tv field i assumed to be hnearly dependent on the tempera.ture ﬁeld

, VPo-—%VT ' P ‘ (M

A eonstant concentratlon gradwnt of some solvent3is now set on the fluid pa,rallel to 2-axis by imposing .
an appropnate concentratlon asa boundary condition. An add1t1onal chenge in the density field is assumed '
to be supenmposed on the prev1ous one i.e.

VW—VM+V1f%VT+%VQ—kW&+%&) e

Thls process is repeated till there is y concentration and temperature gradient, all parallel to z-axis
' and contrlbutmg to the densfoy gradrent The ﬂuld is 1nIt1ally at rest. The body force g is also aotmg along
z-axis. ;

The mxtlal rest state of the ﬂuld 1s glven by
o

o P.i/P = Pjor/Por + o Bjz

~T=Tm—‘i—ﬁaz ) IR ¢ (9)
P—Por(1+ 2 “J;ejz)
BT
_dz_:—”g

o

Since there is no motion, thls initial state must perswt However smell disturbances may cause spon-
taneous flow. Cases in which any small disturbance decays in time are defined as stable ‘while all other |
cases are unstable. SufELclent condltmns are sought for a case to be stable ’ g

The prmmple of exchange of sta,blhtles is known to hold good for some cases

BASIC: ANALYSIS

.. Let the initial state described by equatmn (9) be shghtly perturbed ‘The perturbatlon in pressure
: temperature, ‘magnetic field and density is denoted by 8p, 1o by 3p respectlvely Let u,0,w denote the
‘velocity. in ‘perturbed state Equation of state for p is sub=t1tuted in momentum equation and the set is
linearized. : :

The change in densrty Sp due to perturbatlon m temperature 7o and 7j in concentratlon is glven by

, SP = ""I“P ("'0 ’3) = "_‘ o"Por [1 'l“ °‘o (T -Tor) + 2 % (PJ/P - P.’OO'/PW)] ‘ , (10)
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* The sebis rewntten 1n the non-d1men81onal form usmg followmg charactenstlc Values‘3

. . . W ey . Ho P K,
L= == - b= — H — -
' e T weTh ,,——1’{‘2 H K » v

o o s e
‘ A % Bj = vz};IJOA“ T e "J-’}/VGKJ L

The dlsturbance is assumed to depend on the time in the form
g (g ,t) = ¢ot ¢ ¢ (@y:2), o = R (A + i I ()
7 (w,y,z t) = ¢ot rj (®y2),d =0, 1,2....... .'y

“We consider here the problem on the basis of Boussmesq s apprommaﬁolon2

By ign Oriné’ tenns; °
second and higher orders i in perturbatlon, equatlon (1) to (5) now becomes R »

‘3 + 3y - —OI TR (11)
(6 — VYU = —V P—ik 'EO dj')‘jt'ﬁ‘ﬁRﬂf(H;z koo (12) ‘
o (op = V2) .7;=H\ —?—?{)— e ‘ (13 :
’ (g/]c,__~ Vv +ae=0 where j = 0 for temperature » ‘ (14)
o N o §=123,.. yfor concentration -
. Ha . e .
Pt Po‘ . + ,H 9

w1th the ‘boundary condition v = v = w = 5 =0.
= (o Bj g 04)/K7 is the non-dnnenswnal j contnbu‘vlon to the modlﬁcatlon of the body force per

umt dlsturbanoe e ,
7 is the j dlsturbance in the concentmtlon (for temperature ] == 0) .

kj = Kjlvis the inverse of j. Prandtl number..

: H2 2

Ry = L ep 2 is the non-dnnensmnal Magnetm pressure number o

Boundary  conditions for magnetic ﬁeld depend upon the electrlcal propertles of medlum ad]ommg '
perfect conductor Boundary

the fluid. Here we are considering the case of medium adjoining the ﬂuld isa

condmons W1ll be?: , ,
h, =0 on the boundmg surface Smce aw/ % = Oon a r1g1d boundary, it follows from equaduon (11)

that,
Vih, =0 on the bounding surface

‘Taking curl of eq. (12), the set of governing equatlons now beoomes

(a—v2) (au/ay—av/aw)—O _ E (15}
- N 3u aw . ’ arj . : o 3;&;‘ 7, \‘ S "
’ ’ " j=0 R L - ‘/ .
(o ey o
LRSI Lo S 4 2 g o E ;
(a—-\72)‘(az —,ay')— - d"ayz+RHHz ya , _(17)
"U=0 e
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cn—VIh= B | a9
(olki — V%) ¢,+w_0 3_012,......;.3, ey
 ANALYSIS | |

In (16), (1M & (20) coeﬁiclent dj and k, show the physical propertles of the fluid which has 2 (y+ 1)
parameters, A 2(y-+ 1) dimensional space ¢ is defined by D. Pnucli* ebal. Pollowing the same method
of solution and placing the container inside the parallelopiped of sides @, b and ¢. The system has now its
point in parametrlc space ¢, its subregion in function space F and its region in the complex space C. - Let
all the functions in F which are defined inside the container and zero on its wall be identically same in the
part of parallelopiped not occupled by the container. Now F function space which contains all functions -
that : inside the” container—they are the solutions of eigenvalue problemand’ are continuous with conti-
nuous derivatives. They are zero on the container and 1dentlcally zero outside the container.

This definition does not change F, but increases the region of the deﬁmtlon of its functlons to the whole
paralle10p1ped e . S

Takmg curl of (15), (16) and (17 ) we get
‘ (o——Vz) V2w 4 z.' d,azr, RHHD(v2k)—0 o 21)

where

a? = 3%/a0® + 9%ay® aud D = aju S
Now the solu’mon of e1genvalue problem (15)—(20) must satisfy (21). Consider a new function space G
which contains all the functions with the properties ; on the boundaries of parallelopiped—they are zero.
Inside the parallelopiped—they are: contmuous with p1ecew1se contlnuous derivative and solve elgenvalue =
problem N , ,

Lo — VZ)VZ.fw + -26 & & f; + By Hz (VEh)y=0 . o = (22)
f(a/kj— VO fi+fo=0 , 7=01,23........ y (23)
v (op— V) h =H.Df, (24)
Makmg use of eq. (24) ineq. (22), we get ‘ ' ‘
(0 — V?) (o — V) szw + 2 g, (ops— 79— QD T2 fu = 0 (25)
(olkj — V3 fi +fe=0, j= 0,1,2, ------ v “ (26)
Where ‘ : ‘ Q= RH H? ' PR

Now d; and f; are for the same point-¢ ini parametric space as that of eq. (21) and eq (22), (23) & (24).
After comparing the definition of function space F and G we. find that all functions in F satisfy function
" @ while all functions in G do not satlsfy the requirements of space F. Hence function space F can be obtain-
ed from function space G by imposing additional reqmremen‘c but that will decrease the functmn space
Hence it is found that the space @ contains -space F in the sense that

the W functions are a subgroup of the f,, functions,
the r; fanctions are a subgroup of the f; functions,
and ¢ complex numbers of the A numbers. = ° ‘
This result can be described by the form? , , , » ' -
Fde : R e
Cr A Ca ' : ; : ‘ _ ‘ (28)
© It is now proposed to ﬁnd condltlons under Whlch C does rot contain eigenvalues with R (X)> 0.
Equatmn (28) states that these are sufficient cond1t10ns for B () <0, and, therefore, sucﬁ"lcwnt conditiors

for stability.
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Because R (A)=0 separate regions of B (A) >0 from those of R (A) < 0, attention is now drawn to
necessary cond1t1ons for pure imaginary eigenvalues.

Assume f,;, and f; with - their A to be known. These functwns may be expanded into a senes of some
complete set of normal modes?. , :

fw = Z Amnp sin [am (z — a/2)/a] sin [1m y— b/2)/b] sin ap [(z — ¢/2)/c] (29)
mnp )

fi= Z Bjmnp sin [nm (z — a/2)/a] sin [n (y — b/2)b]. sin [7p (z — ¢[2)/e] (30)
mnp :

Substituting the eq. (29) and (30) in eq. (25) & (26) we get,

Amnp (A py + ) (A +€2) & 4 9P 'E‘o By mnp (A pa + €8) d; + @ Amnp (—9) =0 (31)
J= _ S
B; mnp (Al -+ €2) -+ Amnp = 0 §=01238 ......9 (32) .

where :
4 i = (w%mﬁ—%UMMP-FUWkP e
Putting eq (32) in (31) for Bymnyp, we get

. (N +S) [(A+E) ()‘P2+€2)+Q(Ez-—’f)3)]v

L A : ’
=n* 2 4 (Appte) S (3
; =0 \
Now S OA=R(M\)4iI(n)
: ‘__' 7 y T
Put O o Z S :
; A o , L .
T = ‘ L@
1 .
h= ks ‘.k ’ 4Ql = 63-172

Following Chandrasekhar? and equating real and imaginary parts when B ( A ) =.0. We obtain .
Bio=(14+2P—{I(M)P(1+2)(p+ptpp)+@ Q+z) (3

and : ‘ .
Biz/(l+az)=(1+2R2(l4p+p)—pp{l(N)}+ne (37
Substitute for B, z from (37) in eq. (36) : ‘ i .
, {IM)PmLf T e— (1o (39

Put X = I (A )/ez and writing the values of Q zand I (A) from (35), we get

s P2—P , (E—n) ' .
and the values of X are the real solutions® of (39), which may tave more thanone solufion. Let the solu-
tions are denoted by X, m=0,1,2.,........ , where X, = 0 and X, m#0, are the non-zero real solu-
tions of (39). On putting the values of @, B, and zin (36) from eq. (35), we get
| QtppX) _ pXx
”“[64"1‘@ e —n? )]‘—Zd 1+Xp12 - Pe . (40)
J=0 T

Consider the rlght hand side of (40). Let tins expression attain a certain value when one of these X,,
. ~is substituted in it; in general it becomes a different number for each of the X,,. Let the largest number
RO obtamed be denoted by M.R (Mod1ﬁed Rayleigh Number) ;

105



Dgr. Sor. J., Vor, 24, Jony 1974

Y
(I 4+ppXa®) I’BX i -
MR = Mm[:z @_ e iy o | m=012., @y

L]

j=0

When X = X, = 0 MR = 2 d; = Rayleigh number R,
§=0
hence MR > R,

Chandrasekhar® has defined ME w:th various value of p; and p,. To avoid the complications at this atage.
we have taken P2 as a constant. But MR does depend on various values of pg and Pr

Let cntwal Rayleigh number Rg attam the minimum value-of the expressmn e’/nﬂ [ e‘ +Q(—7?)].
Where € a.nd 7 are the continuous function of (m, n, p, a, b, ¢). y

Ro = Min [ &[n? {e! +Q(€*—n2) ] ' (42)

This value R, depends on various values of Q. As Q1 increases Ro mcreases The same can he determined
by the table given by Chandrasekhar?

It should. be noted that eq. (40) is not satisfied, for pure imaginary elgenvalues, when MR < R, is
the condition taken, therefore no such values exist or the imaginary coordinate axis in the complex plane
isa forbidden zone to eigenvalues. Whereas MR > R, does not show the same result because 5/ can
always be largely chosen to satisfy (40).

Analysing (33): the eigenvalues A are the solutions of a polynomlal and therefore, they are conti-
nuous functions of its coefficients. For larger values of P and moderate values of m and n (34) becomes .

Ax—e : _ (43)

This shows that there are always values of A in the left hand side of complex plane. prever when the
imaginary axis is a forbiddern zone the A value cannot pass continuously into right hand side of the com-
plex plane. Therefore, the condition

MR<R,. o ()
is sufficient for sta.bilit}.r.

CONCLUSION

The two Rayleigh numbers (Modified & Critical) have been found out in presence of Magnetic field.
The value of R, depends on the sides of parallelopiped and the strength of magnetic field. R. increases
as the value of magnetic field increases. It is seen from eq. (41) that Modified Rayleigh numter MR does
not depend upon sides of parallelopiped but it is dependent upon p. and hence the presence of magnetic
field decreases the value of MR, Further it is noted that the presence of a magnetic field makes the condition
of stability MR < R, satisfied for the unstable modesin the case when _the magnetic field is not acting on -
the fluids. :

The laminar flow, with a pressure gradient is identical with a flow of lubricating oil, 'n | the narTow space
in between journal and bearing, which is used in all moving parts of airerafts and ete.
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