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Effect of magnetic field on the electriaally conducting incompressible fluid, completely confined in u smooth 
oontainer of arbitryy shape, has been studied, The temperature gradient, concentration gradients and 
time independent magnetic field are assumed to act parallel to body force. Two Rayleigh numbera i.e. 
Modified Rayleigh number M B  and critical Rayleigh number Rc have been obtained'. It  is found that 
instability o c w s  if Y R  < Rc. 

N O T A T I O N S  

Am?$)\ CoeEcient in Fourier series 
B a v l  { 

C Complex space, concentration 
d Contribution to body force per unit disturbanp-~ I 

p, G Ifunction space 
E , Diffisivity 
k Inverse of Prandtl number 
v .  Kinematic viscosity - 

'hi Magnetic diffusivity 
Y Number of solvents 
m, 12, P Mode numbers in Fourier series 
RH Magnetic pressure number 
B Gradient 
a Change of density per unit gradient 

Disturbance 'r 
Q Cumplelr eigenvalue 
or At origin 
X Complex eigenvalue 
o Initial rest state 
4 Cartisian 2 (y+l), dimensional parametric space 
p2 ~1.l H 

The rest notations used in the problem have got its usual meanings. 
2 

The stability of laminar flows has been studied by many researchers, Lord Rayleighl has studied 
theoretically the laminar flows. Chandraeekharz has studied the problcw of stability of these flows in 
details. He extended his studies to include the effect of magnetic field on stability of fluids. D. Pnueli 
et a13 have investigated the sufficient condition for stability of a fluid completely cor&~ed in a closed 
container of arbitrary shape. The coilcentration and temperature gradients act, on the fluid, parallel to 
body force g that is z-axis. 

In this paper we have generalised the stability condition3 in presence of a time independent maeetic 
field H,. 

B A S I C  E Q U A T I O N  
t 

Let H,, = (0,O Hz)  be the uniform magnetic field acting on an electrically conducting incoqressib]e 
fluid parallel to z-axis. p8 the magnetic permeability is taken to be constant. The basic equations for tern- 
prature, concentration and M.H.D. flow are given by : 

a. D = o .  \ 

- (1) 
5 7  PE A --- 
at P ( H T )  ~ = - V P , - ~ X ~ + ~ V ~ U  (2) 
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- aw 
(u pp - 0 2 )  = (19) 

(u/kj-\J2) ~j + w = O ,  j =0,1,2, .... .... 7 (20) 
A N A L Y S I S  

In (16), (17) & (20) coefficient dj and kj show the physical properties of the fluid which has 2 (y+l) 
parametem, A 2 ( y  + 1) dimt2n~$XX?,! qac" is de&e< );B D. pP-~aEq ek ~ 1 .  B~!!s~i;iiiig the bamc ueihod 
of solution and placing the container inside the parallelopiped of sides a, b and c. The system has now its 
point in parametric space 4, its subregion in function space P and its region in the complex space C. Let 
all the functions in P which $re defined inside the container and zero on its wall be identically same in the 
part of parallelopiped not occupied by the container. Now P function space which contains all functions 
that : inside the- container-they are the solutions of eigenvalue problem and are continuous with conti- 
nuous derivatives. They are zero on the wnta iw and identically zero outside the copztainer. 

This definition does not change P, but increases the region of the definition of its functions to the whole 
parallelopiped. - 

Taking curl of (15), (16) and (17) we get, 

Y - 
(u -V2)  V 2 w +  2 dja2r j -R,HZD'(p2h)=0 

j=O 
(21) 

where -- .a - -- a?,'/a$+ f!!,'ay2 ell; I; = a,'az 

Now the solution of eigeavalue problem (15)-(20) must satisfy (21). Consider a new function space G 
which contains all the functions with the properties ; on the boundaries of parallelopiped-they are zero. 
fnside the parallelopiped-they are continuous with piecewise continuous derivative and solve eigenvalue 
problem. I 

Y - ' 
(o - V2) V 2  fw + 2 dj a2jj + RH Hz (V2 h) = 0 . 

j= 0 
(22) 

(u/kj-V2)fj + f w  = O  , j = O ,  1, 2, 3 ........ y . (23) 

(o p* - v2) 5 = Hz D fw (24) 

Making use of eq. (24) in eq. (22), we get : 
Y 

(u-V2)  ( ~ p z - T 7 ~ ) V ~ f G +  d j a 2 f j ( o p z - ~ 2 ) - Q D 2 ~ 2 f w = 0  
j-0 

(25) 

( ~ J k j - V 2 ) f j f f ~ = O  , j=0,1,2 ,...... y (26) 

where Q = R, H,2 
Now dj and k.j axe for the same point 4 in parametric space as that of eq. (21) and kq. (22), (23) & (24). 

After comparing the definition of function space P and G we find that all functions in P satisfy function 
G while all functions in G do not satisfy the requirements of space P. Hence function space P can be obtain- 
ed from function space G by imposing additional requirement but that will decrease the function space. 
Hence it is found that the space G contains space P in the sense that 

the 'C;V functions are a subgroup of the fw functions, 
the 1;. functions are a subgroup of the fj functions, 
and u complex numbers of the X numbers. I 

This result can be described by the form3 

F d @  (27) 
' 009 9 CA (28) 

is now proposed to find conditions under which C does ~ o t  contain eigenvalues with R ( A )  > 0. 
Equation (28) states that these are sufficient conditions for R (A) <0, and, therefore, su&cient conditiors 
for stability. 
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Because R ( A )  = 0 separate regions of R ( A )  > 0 from those of R ( A )  < 0,  attention is now drawn to 
necessary conditions for pure imaginary eigenvalues. 

Assume f, andfj  with their A to be known. These functions may be expanded into a series of some 
complete set of normal modes2. 9 

fw = Amnp sin [nm ( x  - a/2)/a] sin [m ( y  - b/2)/b]. sin vp  [(z  - o/2)/c] 
mn%' 

(29) 

f j  = Z B, mnp sin [nm (a - a/2)/a] sin [rn  ( y  - b/2)/bl. sin [VP (8 - c/2)/c] (30) 
mnP 

Substituting the eq. (29) and (30) in eq. (25) & (26) we get, 

Bj mnp (A/& + €2) + Amnp = O j = 0,1,2,3, . . . . . . Y (32) 
where 

e2 = q2 + w2p2/c2 = ( vm/t  )2 + ( m / b  f ( rp/c )a (33) 
Putting eq. (32) ia (31) for Bjmnp, we get 

=q' E dj ( + a +  e 2 )  (34) 
j=o 

Now A = R ( A ) + i I  ( A )  

,la Put x = - \  

€2 - q2 
A A, = j=O 

€2 - ,la (35) 
1 

PI= - Q - QI = (+2 

Foll6wing ChandrasekharB and equating real and imaginaq parts when R ( A ) = 0. We obtain 

R l x = ( l + ~ ) ' -  ( l ( A l ) ) ' ( l + x )  (pi-I-p2+2)12)2) +Ql (14-  X )  (36) 
and 

R ~ x I ( ~ + ~ ) = ( ~ + x ) ~ ( ~ + P ~ + P ~ )  - - h ~ ~ ~ ~ ( ~ ~ ~ ? ~  + f i ~ ,  (37) 
Substitute for R, x from (37) in eq. (36) 

"-" Q 1 - ( l + x ) 2  I I ( I ) ) 2 p 2 8 =  --- 
~ + P I  (38) 

Put X = I ( A )/€a, and writing the values of 9, x and I ( A, ) from (35), we get 

and the values of X are the real solutions3 of (39), which may Fwe more than one solution. Let the solu- 
tions are denoted by X,, m=O, 1, 2. . . . . . . . . . ,' where ;YL = 0 and Xm, m#O, are the non-zero real solu- 
tions of (39). On putting the values of Q1, R1 and a in (36) from eq. (35), we get 

Y 
€2 - [ € 4 + Q ( ~ 2 - 7 2 ) ]  = 2 dj ( 1  f p 1 P 2 X a )  p2 X2 2 

- -  
1 + Xp12 q2 €2 (40) 

j=o 

Consider the right hand side of (40). Let this expression attain a certain value when one of these X ,  
is aubstituted in it; in general i t  becomes a different number for each of the X,. Let the largest number 
ao obtained be denoted by NB (Modified Rayleigh Number) ; 
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- ] for tn = 0, 1,2. . , (41) 

1=0 

Y 
When X = XU = 0 MR = Z dj = Rayleigh number B, 

j = O  

hence MR > R, 

Chandrasekhar2 has defined MR with various value of p, and p,. To avoid the complications at  this stage. 
we have taken 3 ) ~  as a wnstant. But MR does depend on various values of p2 andp,. - - - - - .  - : - - 

Let critical RayIeigh number R, attain the minimum valueof the expression ~ ~ / q ~  [ c4 + Q ( e2 - r]  ) 1. 
Where E and 9 are the continuous function of (m, n, y, a, b, c). - - 

R, = Min [ €2/r]2 (64 $_ Q ( €2 - q2 ) j ] 
- - 

(42) 

This value R, depends on various values of Q.  As Q increases R, increases. The same can , be - determined 
by the table given by Chandrasekhar2. 

It should be noted that eq. (40) is not satisfied, for pure imaginary eigenvalues, when MR < R, is 
the condition taken, therefore no such values exist or the imaginary coordinate axis in the complex plane 
is a forbidden zone to eigenvalues. Whereas lMR > Rc does not show the same result because e6/q2 can 
always be largely chosen to satisfy (40). 

Analysing (33) : the eigenvalues h  are the solutions of a polynomial, and, therefore, they are conti- 
nuous fuilctions of its coefficients. Por larger qalues of p and moderate values of m and N (34) becomes 

A % - - c 2  , . - (43) 

This shows that there are always values of h  in the left hand side of complek >lkne. However when the 
imaginary axis is a forbidden zone the h  value cannot pass continuously into right hand side of the com- 
plex plane. Therefore, the condition 

is sufficient for stability. 
. - - - 

C O N C L U S I O N  

The two Rayleigh numbers (Modified & Critical) have been found out in presence of Magnetic field. 
The value of R, depends on the sides of parallelopiped and the strength of magnetic field. Re increases 
as the value of magnetic field increases. It is seen from eq. (41) that Modified Rayleigh numker MR does 
not depend upon sides of parallelopiped but it is dependent upon p2 and hence the presence of magnetic 
field decreases the value of MR. Further i t  is noted that the presence of a magnetic field makes the condition 
of stabilityMR < R, satisfied for the unstable modes in the case when the magnetic field is not acting on 
the fluids. 

The laminar flow, with a pressure gradient is identical with a flow of lubricating oil, in the narrow space 
in between journal and bearing, which is used in all moving parts of aircrafts and etc. 
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