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The viscous effects of & liquid layer overlymg a solid halfspa.ce (assumed. generahzed thermoelastic) are exam.med

This paper, being a continuation of a prevmus note of the same tltle, deals with the effect of Vlscosuty
on the interface waves propagated in a liquid layer exerlying a generalized thermoelastic solid halfspace.
This note extends the results of Harinath® and has applications to defence science and geophysical pro-
blems. The problem considered has more relevance to the physical situations encountered in reality than its
elastic counterpart. In other words, generalized thermoelasticity fits into the realistic situation better than
classical elasticity or coupled thermoelasticity. The details pertaining to the non-viscous effects of liquid
layer overlying a perfectly elastic halfance may be found in the treatise by Ewing, Jardetzky and Press?;
those of coupled thermoelasticity in the treatise by Nowacki® and details of wave propagation problems
in generalized thermoelasticity in the concise paper by Harinaths. The stress-strain relations used for a
. viscous fluid may be found in Pipkin3, Wlth slight modlﬁcatlons, without any loss in generahty Most of the -
results obtained here are new. :

BASIC EQUATIONS A

_ Let us consider a homogeneous isotropic generalized thermoelastic halfspace with an overlying incom-
pressible viscous liquid layer, both initially maintained at a constant reference temperature 7. -We set
up.a rectangular cartesian coordinate system (z, ¥, 2) in the media such that the free surface of the liquid
is chosen as the plane containing the z and y axes and the media is represented by 2>>0 by taking the z-axis
vertically downwards. If H is the thickness of the liquid layer, then 0<Cz<<H represents the liquid layer,
~ 2=H is the interface and 2> H is the solid halfspace. (Any other convenient system of coordinates may be
used. This, however, does not alter the frequency equatbion because of the tensorial behaviour of the stresses
and strains).

Suppose the liquid (assumed to be inco'mpressible and viscous in what follows) i8 of density p, of
hydrostatic pressure p, and of sound velocity p (i. e. the velocity of sound waves in the liquid is p). For
waves propagated in the z-direction with no components along the y-direction - the dlsplacement compo- ‘
" nents (U’, 0, W’) in the liquid are given by

U___c;i »-qs,,,_W' gﬁ —#, W

where the potential functlon ¢’ satisfies the wave equatlon ‘

Bt e = | | @

wherein a supenmposed dot denotes differentiation with respect $o the tlme variable 7. Also the hydrostatic
pressure p in the hquld may be expressed in terms of ¢ as - ~

o P——p¢ -

Let the material of the 5011d halfspace z>H be of densxty P speclﬁc heat at constant strain s, coefficient
of thermal conductivity k, ratio of the coefficient of linear thermal expansion to isothermal compressibility
being y, relaxation tlme factor v, couplmg constant e, isothermal longitudinal wave velocity « and shear

*Present address : Depa.rbment of Mat;hematlos, Bangaloré University, BANGALORE-560001
' 187



Dar. St. J., Vor. 28, Jury 1978

wave veloc1ty B and further, let T denote the temperature deviation from 7', after a lapse of time 7. Actually,
€ = 92 Tylp® so? is of order 10—2 for common metals while the relaxatlon time factor ¢ is of order
1014, For waves propagated along the z-direction with no components along the y-direction the displace-
ment components (U, O, W) may be chosen in terms of two potentml functions ¢, ¢ as

R e I et T AR

where qS, alf satlsfy the partral d]iferentral equatmns | . ’ _

pu? (¢u+¢u)_w(T+tT)=p¢ |
Pt e = | - f | )
o (F 4 8) 4 7Ty B b ¥ s o+ V) =F(Tw+T)

In short, We are assuming all quantltles to be mdependent of y, thereby reducing the problem to one of two
dimensional plane strain. It would not be out of place to remark that in a generalized thermoelastic halfspace,

the longitudinal wave velocity exceeds «, actually equal to o/ 1 et, where t=1 —iwt'. [see equation
(N]. Inreality there exists no thermoelastie solid with longitudinal wave velocity equal to «. However,
following Chadwick, we use « for the sake of notatlonal convenience and we refer to it as the mothermal '
longltudmal wave velocity.

In terms of a frequency parameter w and & wave number 8, for waves propagated in the -direction,
we assume the potential functions ¢, ¢,  and the temperature devmtlon. T to be given by

¢ = ‘FGXP i (82 — wg ) ~
\ ~¢ =¢ expi(Se —wt) '
oy =3 expii (sw_',w?)/k
T \~=:?l" exp ¢ (Sa; - w?) J

)

whereln through a3 sultable Fourler transform with respect o w the simple | harmomc tlme dependence facto
exp ( — zw ¢ ) could be converted into other tlme—dependence factors '

Subst1tut10ns of equations (5) in the earlier equations lead to

Bt FD = — 0§

p=iwp'§ |
p2 o+ ) —vt T =—putd [ (6)
32<¢m+¢u)——f——‘w2$
zwpstT+wyt 7, <¢m+¢u),—:k(r + 7T
where. Ctmle—dwre - 0

‘For small frequencies, it may be observed that ¢ is almost equal to 1. -
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'As int equatlons (6) may be solved to yleld

3

) ’ T Ay Arz‘ 8.0—— t)
¢’= [A’ ? —}—B'ea]ei(, Aw

g - ite—wD)

4= 3 S | |
b o= o ESETEY ‘ : |
yt T =p [Ae—)\lz (w? — uz 2) + Be (w? — o g;2) ] 6:(8a:-~wt)
'm conforrmty with thei notations used m1 glven by , .
W=l = ©)
0% g° are the roots of the quartic equation | o o
'  Ko? ¢* — @2 [kw? It dwpst o (} d-et)] + wd pst =0 R (10)
A12=82—«q,,Re(Aj)>0 9_0123 S (11)

The unknowns A", B, A, B Cin equamons (8) are to be determmed by usmg boundary conditions.and for
obtaining finite solutlons it is clear that $, %, T >0asz > o0.

_The normal stress Osn and the shear stress Cai in the solid medlum are given by the eXpressions

N _ 025 = p&? ($rz + ¢zz) + 2p;32 (‘lllmz - ¢'mm) — y t T -] Y
a | ¢ @
) = pf? (2¢sz + ‘/’xw = ‘/’zz) - L J

Equations (12) are derived from 2 generahzatlon of Duhamel- Neumann lawt, usmg the last of equatmns (4)
which represents the modification of Fourier’s law of heat conduction to inelude second order time deriva-
tives yielding only a finite speed for the propagatlon of heat unlike coupled thermoelasticity.

For the incompressible viscous 11qu1d layer, we ‘use the following stress-strain relations given 1h5
m = pdy; + 20 ¢ i - A . (13)

with self—explanatory notations where v represents the viscosity coefﬁclent More clearly, for n};rmal and
shear components . of stresses from (13), we obtain - :

= iwp'¢’ + 2v¢zz '] 
:

. . cm—thﬁwz M)_ : J
(The slight modiﬁcations from® will entail no loss in generality).

- (14)

Boundary conditions

The preclse boundary condltmns are , .

o ou =0_ ongz =0
() o = ozaonzéH
(i) 0gp = ' %z onz=H

H

n‘

-(iv) W = W’ on 2
(V)T =0 onz

i.e. we agsume that the free surface is stress-free ami ab the interface a]l tontinuity conditiofis are satisfied.
. At the interface, no condition on the tangential displacement can be imposed.

l.'
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FREQ VENCY EQUATION

The frequency equation is determmed by the elimination of the unknowns A, B, A B C' present in tﬁé :
solutions (8) by the use of the boundary conditions (15).

A ca,lculatlon leads to the followmg five equat1ons in the unknowns A’ B’ A B,C

(wp’ + W) (4’ + B) = S
é;wP'Jr‘Moz) [e'*oﬂ A’ + ehoH B'] p (28 8% — w*‘») [e AH A + e-AnH B] + |

N

— 2is0), [ rhH 4 — eMl Bf] 4 28ppR [Al EMHEA 4 Ny N B]+

~

(16)-
p (20288 —ud) e MH 0 =0

— X P A’”vi— 2o Py B’ + A e')aHA F A 67AH B— 8e™MH (¢ = 0
pNH (wh — o ) A + pe Nl (P —a2g?) B=0 ]

On further mmphﬁca,tlon, equatlons (16) are equlvalent to the followmg system of equations
: 9'\03 A' —I— e"'\nH B’ =0
»ww+Mﬂw+Hwaw w?) (4 4+ By =
=2y epo=0 L )

2@3,\0@( — B) + 2i8pf2 (LA £ A B) + (228" — ) 0 = 0
\ — A'+A0B’+AA~A23+180—0 .
o o (w? —“2912)A~+(w2*“292)3 0.
Thus, the frequency equation is given by the following deternﬁndntal equation n
 eME e 0 0 °
dwp’ + 20 dwp’ - 200 (2828 —w?)  p(2B8%— w?) —28pp%
28, — 28w 21/34\1932 2482,p B2 p(28282 — w) | =0 (18)
e U L= D ' 0]
o .0 -t —og? w2 — o’g,? 0 l
Alternativély, 'equa,tion (18) is written. '
wp' + 2 2P P 2P 2
— 2i82q %N B BN, PR 28— | g
+ P A A R
0 -‘wg — a.zjgla ',()2 — g2 222‘ 0.
i L AR 208w ARR R —dis), @R
L Zdag 2081, B2 282 2P — w2 (19)
B —phy =X — Ay ' (LIS
0 wh—afg? wl—alg? 0
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It may be noted that the fourﬂl order determinants in equation (19) are similar and each may be obtained
from the other by merely changing the sign of A, throughout. Thus we have fo evaluate the right hand
side (RHS) of equation (19), to obtain the frequency equation. A calculation shows -
o @l 4 2q) (20262 — w?) [282 2y 0 — p (2028 —wA)] + )
RHS (19) = O\ — &) | + 2 —o?(# 42, 09] - @)
© B o A2 A B2 - 2om® Mg — dpA A B2BY] | ‘
Using (20) in equation (19) yiélds the f:equency'equation given by ,
g | PE— (8 A AT - [ pf A 20mP AP — DAY + 4pAA, 5264 ] , |
B |t n0 (B8 ) ey N
Do — o (8 0a) ] it o g gy o Bt
= [— @@ (\ + ) (20282 — u?) [p (24282 — u?) + 22 087] | | A

A further simphﬁcation of (21) using

CeMH — e MH  H ]
eMH - gmAH T g2MH ]

tanh AH = " (22)

leads to the following neater form of the frequency equation represented by equation (23)
[w2 — o (82 o+ )\1/\2)] (%03 p' -+ 2W2A02) . _ '
['—— po® (A, 4 Ag) (282 8% — w22 tanh A H =
g B2 (v — pB%) (w2 —a? (82 + 4, \) ] — ]

Sk RS iy

(23):

In the absence of the viscosity coefficient 9, the above frequency equation (23) reduces

dpdg Ay 8% B4 [w? — a2 (82 + Xy A,)]
po (A, 2y) (282 8 — wP)? — iy’ [w? — o (& + Ay Ag) ]

tanh A H = (24)

Equation (24) is the fre,quency equation, when a non-viseous ']iquid layer overlies a geherélizéd thermoelastio
halfspace. Furthermore, equation (24) may be observed to:beanother form of equation (10) of reference
[1]. This is because the changes between coupled thermoelastieity and generalized thermoelasticity do not
explicitly appear due to the use of similar notations. The results obtained generalize the results of reference
[1]. ' ‘ / '

"LIMITING CASES

The limiting cases of reference [1} may be repeated here. However, we discuss only two interesting cases
'viz., the case of large frequencies with fixed wave number and the case of an incompressible solid. For small
frequencies, since ¢ is almost equal to 1, the coupled thermoelasticity and the generalized thermoelasticity
‘do not differ appreciably and hence this limiting case is only indicated. i

(3). Large frequencies

Suppose We assume that 8 is constant and w is real and large. Then we have the following approxi«
mations : : ' ,

w? 1wpset? pPs% s

9 = P + % T e
o fwpst - pPs%eio®tt
BE T 2 |
tw ipsed®? | plsPelolth a7 -
M= [ = = +t e (25)
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’kz L (1__@)‘\/ w;’:t [ 1 tpse’a?td n 1k &? ]

25w 2pstw
S w 1p8% R
8 B 2w
N w Tud2
0T T 2w
taken from equations (12) and (13) of reference [4], where terms containing 1 Jw?, 1jw3, . . . are all omitted.

Substitution of (25)‘in (23) after a lengthy caleulation yields the frequenéyr equation as a comp].icatéd mathe-
matical expression which does not appear to have any immediate practical use. Hence, for the sake of
brevity, we omit this cumbersome equation and consider only a particular case of it given by

o ow? — 2 82 1 A/ wsbst o 1‘"_.A/ oS ] )
[w o —ffoc,( + 1) o (tx ( 1) [ = o .

v : i : y

' [wz_tan i (W’P"" 201: ) — 4iwp. —-’87- (v_gpﬁz)J =
_ 2[ w pseat? 1 “wpst .  > ‘(26)
= o T ! **&/ o J(23232—w2)' -

H - SRR Ul I
[ ptan 1{; (23232_102).__‘2,%0“2 _;_:I

The terms containing even 82w are neglected in obmpé,riSOn with .

From equation (26) one can calculate the phase-velocity and the attenuation of the waves propagated iv
the z-direction. It is easy to observe that equation (26) yields an equation for'V=uw/8 wherein all the
terms' containing 8 may be replaced by V and w. Solving this equation in which V is determined in
terms of w we can calculate the phase-velocity of the propagated waves [equal to 1/Re(1/V)] and the
_ attenuation in the 2-direction [equal to w.Im (1/¥)]." Hence to obtain meaningful expressions, it follows
that we have to necessarily choose & complex, since w is real. Also various interesting cases of
equation (26) may be discussed for 0 < H < |mp/2w | - (See reference [2] for details). :

For still Jarger frequencies, equation (26) reduces to

' _ , 9 T iw - 12 .
L e =

- . ’
It is very interesting to note that equation (27)is independent of H, the depth of the liquid layer
. and yields an approximation for the viscosity coefficient v of the liquid. An easy computation
Jeads to

- 2 o [“ (pat — p)\) ,\/ pstw p2seatt? J (28)
2w [w +'ocA/ pstw ] | ‘ 2k 2k
’ 2k o B

which on further approximation reduces to

ap? (po — p')

V= .
Cow [«+A/2"'” ]
pst

o)
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In the absence of thermal terms, equa,tioh (29) assumes the form

2

o (po il | o (80)

V=

Thus the viscosity coefficient may be computed at high frequencies by the approximation formula
29) which is rather simple. The corresponding equation (30) generalizes the results?. However, equa-
ions (29) and (30) together show that the viscosity becomes vanishingly small as the frequency
increases. : o ' :

An equally surprising result comes out of equation (26) when the hquld layer is assumed to be very
thin. It may be verified that we obtain the very same equation (27) when H is very small from
“(26). Thus very high frequencies or very thin liquid layer appear to have the same effect on the fre-
quency equation at large frequencies. Also, it may be observed that the viscosity shghtly Increases
the veloeity of the propa,gated waves and the attenuation.

(43) Incompressibility

Suppose we assume that the solid halfspace z > H is incompressible. Then the mothermal longi-
tudinal wave velocity is infinite and in the limiting case the frequency equation (23) assumes the
form

252 g [24g B2 (v — pB%) (82 ++ A Ag) + v (A -+ Ag) (262 6% — w?) ]
(8% + Ay %) (8 5/ + 2002 A2) + p (A, + Ag) (22 87 — )2
iwpst (1 + «t) |
F

tanh (A,H) = (3L

where A2 = 82— and X, = & (since « isinfinite)

If we now assume that the liquid layer is also very thin, then equation (31) yields an apprommahon
for H which takes the following form on further simplification for small frequencies

45 . v—w. v— 2p8% gt
8 (ww® p + 2u? 82 v) -+ p (28% 8% — w?)?

H = 28 (32)

Equation (32) is indépendent of thermal terms. Thus for small frequencles, the classical ela,stl-
city theory may be suitably modified to yield the required results. This is the reason, why we neg-
lected the limiting cases for small frequencies.

CONCLUSIONS

Most of the limiting cases i.e. equations (26) to (32), reveal the fact that in the thermoelastic case
w and 8 are always coupled with . For small fiequencies, there are no appreciable changes. . But
there exists dispersion in all the cases due to the coupling of w, §,¢. Furthermore, the compressi-
bility of the solid does not enter into consideration for small frequenmos‘ in conjunction with the above
remark. The presence of the thermal terms causes dispersion” of the propagated waves and the pre-
sence of the viscosity coefficient slightly increases the velocity and attenuation of the propagated
waves. Moreover, at very high frequencies or for a very thin liquid layer, the thermal terms have no
influence on the viscosity, considered at large frequencles Approx1mat1ons to the viscosity coeffi-
cient v and the depth of the liquid layer H are obtained in some mterestmg cases and all the results
-are new and worth mentioning. . .

The above results enable us to compute the intensity and the frequency of the shock Waves genera,ted
in an, un.derground explosion caused by nuclear or conventional devices which are of prime mportance in
defence science; underground explomon,s and geophysics.
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