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The problem of vibrations produced in a thick hollow sphere by the application of intérnal and external pressures
which are functions of timeissolved with the help of integral transform technique. A few special cases are illustrated
numerically. : '

Sneddon! solved the problem of vibrations produced in a thick hollow elastic sphere by the application
of only internal pressure, which is a periodic function of time having period 2s/w.

This paper, deals with the more general problem of vibrations produced in a thick hollew elastic sphere
_ by the application of internal as well as external pressures which are the general functions of time. Some
of the special cases have been illustrated numerically,

STATEMENT OF THE PROBLEM

Consider a thick, isotropic, homogenéous hollow sphere of radii ¢ and & deformed by the iﬁternal and
external pressures f, (¢) and f, (t) respectively. The radial component v, at radius , and time ¢ are then
determined by the differential equation? .

2 2 2 2 1 22 ;
'ﬁu=\zg~a—t2'u;'a<7‘f<b,wt>0, . 1

____’__u__

F»»u_l— r o

where the quantity « is defined in terms of the density p of the sphere and Lame’s elastic constants A and
n by the relation ‘ ; . ",

t az — A + 2"] .
.
The radial component: of the stress is given by
) u
G, = (A+2'q ).*—a_ru -+ 22 ~

so that the boundary conditions are

CJodm Zern | =A0; e>0 @
9 oy Y '
l(ﬁ+2n)—3;U+2A7 oy =0 t>0. (3)
The initial conditions are '
u(r,0)=1u(); —gt—u(fﬁt)lt=0=%'(r)§ | (4)

DEFINITION AND PROPERTIES OF ANINTEGRAL TRANSFORM

Following the procedure given by Marchi and Zgrablich? we define the integral transform U/P (n) of
the function u () by the equation . »

b ,
U? (n) = f 1 My (o, gy Bus By fims #) (1) dr )
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where
M, (o, o, Bys Bay s 'r)‘=, y112 SP,(“’D oy, By Bay )
=1 [ Jp (par) {,Yp‘( oy, Ugy pn @) + Yp (B B I‘nb).} — ,
=Y () {Tp (a0 pna) + Tp (% fo b)) 6)
and p, are the positive roots of the frequency equation '
Jp (o, %5 pin a)‘YP ( By Bo b)) — JIp (Byy Bas b b) .Yp (‘ocl,ocz, tna) =0 )
in which \ :

Ty (s te wr) = (= 52 ) Ty () s 7 () |
S )

L Ty(men =(n— gt )Tt m Yol |

where J, (px) and Yy (px) are Bessel functions of first and second kind respeotivély.

The inversion of (5) is -

1. ‘ S :
W)= > g U 00 My (o s By By b ) | ©
where » 4 | »
) S ~" -
= f r [ Mp(“v “2: ﬂp ﬁz’ l‘n: ") ] dr = ‘ i'gp (“v“z’ ﬁp ﬁz, i‘n’)— N
- _p-1 (25 % /31, Bo pnt) Tp+1,( %y, %y Bys Bas b ?) } l . (10)
in which "

Tp:i:1(°‘1’ oy, By Bas Bat) —Jp:lzl(i’m")[Yp(%: gy pn @) + Yo ( By 32, pab)]—

_'Yp:I:1(P'n"') [ o (g, g na) 4+ Jp( ﬁp B pab) ]
* The operational property of the transform (5) is

B P

dz 2 4 - p1f4 | o
I r2 [J.;.’z_ u-l— v —J; u_—v fﬁl—u]Mf (ffp “gg“pp ﬂz, an,f) dr
@ i : ‘
. 52 . - ) N S - d~ 1--
= "'é; M:p(“p“zuspﬁz:l‘mb) [ ﬂ1u+ﬁz E‘?u‘]r:é

— T“:VMP(“I’ o, ﬂl, Be; pu,.,a)[ oclu —|— oez d'r M]r:a— w2 UP (n) (11)

Usmg the well-known results?, it can be easily shown, for p = 3/2 and large n, that

T 1 '
pn R % , (12) L My (a1, a9, By Bos-piny 1) = ( n ) , (13)
and ’ ‘ | ‘ T
o,,=0( Mz) I Sp (e, o By B wgr)fo( M) (13)

"SOLUTION

v Applymg transform with resPeot to r as defined in (5) alongwith its operatlonal property (11) to
* equations (1) and (4), we geb
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2
bp P(‘xlv oz, B1, B2, l-"’l,b)fz(t) - _—2' ‘MP(“IS “'2’ B ﬁZ:l"ﬂs“)fl(t)‘“
2Up(nt)— o T;U(nt)
and ; ,
| U (n,0) = T (n) ; L U?(nt)] — e ()

Applying Laplace transform with respect to t defined by
T na)= | 0 0) cap () e
o ,

o equatlon (16) and using (17), we have

b
Up(’n,Q)'—[T Mp(aj_’“% ﬁl:ﬁ%y'ﬂ:b)fZ (q) - T Mp(“p“%ﬁl, :323 "’n’a)

f@+ 02 + Uy o) ]/<q2+ o).
, Applymg inverse Laplace transform and its convolution property o equation (18), we get

M, (“1,‘“2, Bis Ba Hm,
",32 bna.

UP (n,0) = 0 f v (1)1 (00

¢
a2 M Ky, Koy B 9 > s @ : ¢
L ?( 1“22‘%1 P pm @) f SIn pg o (—£) fL (£) dé +

+ Ug? (1) cos pinot + - ° (_)7 Sin pp o't
Finally applying the inversion (9), we obtain the requlred result as

)
¥
1

1 [BM | . ' )
u(,’,,t)=z_§[ P(“l’a%ﬂbwﬁziy,b) fSlnPnOC(t'—f)fz(f)df'—

& Bz pn &
”. " A e

—en Zj#f; g "”’“’f in s (1€, (06 +

4 U(,P(n)cosn,.oct-{—
CONVERGENCE oF THE INFINITE SERIES

o()
™

sin py o't ]Mp(“b oo, Bis Bay pnst)

(16)

(17)

- (18

(19)

(20)

Let us discuss the convergence of the infinite series (20) and investigate the conditions to be imposed
on the functions fy (?), f2 (¢), %, (r) and u,’ (r), so that the convergence of the series expansion for u (r, t)

in (20) is valid.

Considering the a,symptotw behaviours of pn, Cu and "M, ( %, oz, Bys B2, ten, r) given in (12), (15)

and (13) respectively and then on comparison with the auxiliary series

in 1 '
5 7> land with? gy = : .m0 and X, = o3 Wesee that ‘the series expansion (20) for u('r, t)

wgll be canvergent if )
‘ O i (1Y
(z)of‘smm(t f)f@ds (=5) #>o0.

or
i

[ mmetB e ()

0
(i) Uy (n) = 0 () (z‘o‘z‘) Uy?(n) = O (n)
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Example-1

J1 () or f5 (t) can be chosen as a finite sum or product of the following functions :
~ N «,
Constant, sin wi, cos wt, &*?, Z 8 (t—mi, ) and polynomials in ¢ ete.
' m=0

Ezample-2

Uy () or u,’ (*) can be chosen as a finite sum or product of the following functions :
N
Constant, sin wr, cos wr, &+, Z (r—mr,) or polynomiais in r ete.
' m=0 .

. ILLUSTRATIONS

We now give some important practical illustrations of the general result (20).
Case-1

Let the internal and external pressures be penodw functmns of t1me t wﬂ;h perlods 2n[w, and’ 27r/'wz
respectively with initial conditions u, (r) = 0 and u,’ (r) = 0, then

A@® ——-—Al(l —coswyt),fy(2) =— ds (1 — coswyt), uy (r) =0 and u, (r) = 0.
Substituting the abave boundary and initial conditions in the general solution (20), and simplifying; we

get , N »
B O TN i AT W Y P
n : X . 5 .

b e (SBL )l (e ee)t)

o e (LT ) o)) ]

— ;:2’:; My (og, oy, /31: B2, pta, @) [ g%%l +

Iy s

b (IS el i)

% My (o1, g, Bi, Bas pims 1) @

By putting 4, = A and 4, = 0 in the above result, we get the solution of the problem solved by Sineddon?.
Case-2
Let the internal and external pressures be exponentially decreasing with the lmtml conditions
uy (r) = Oand uy (r) =0,
then ) o ;
L) = -—Ale ke fo () = — Ag ek, uy(r)=0,u) (r)=0.
Substituting the above boundary and initial conditions in the general solution (20), we obfain

o 1 at 4, Mp (15 %95 B1s Bas tims a) —L; t :
u(r,t)—z c. [ P B2 + pud o2 (e +kysin pnat

n
b2 4, Mp {ot1s %oy B1s Bas b, b)
Bs bta KPP o

X (e—kzt-{"‘kzsin Hon O t— 122 oL ¢0S8 [.l'nOCt)] Mp (“1,\“2, Bl, BZ, Fony r) . (22)

X

— Mn L COS pp X £) —
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© Cose-3

Leti the internal pressure be a penodlc successmn of impulses with a penod t, and the extemal pressure
be zero with initial conditions w’'; (r) = 0 and o (r) =0,

then‘

fl(t)=-—-A Z S(t—-mto),fz(t)—-—O %y (1) =0, u,’ (r)-_O

m=0

Subsmtuhng the above boundary and initial conditions in the general SO].uthIl (20), we obtain
: o2 4 ' ) ‘
u(?‘,t)——z z C, ‘%.”na Mp(“p“Z:ﬁl: 132’P‘ma)

0<m<_.

% Sin pn o (t—mity) My (o, a5, By, Bas pin 1) - . (23)
NUMERICAL CALCULATIONS '

_ Let us consader a hol].ow sphere of radii 0-5 m and 1-0 m., Let the matenal of the sphere be ro]led
copper for ‘which the elastic constants are as given below®

A =181 x 101 Newtons/m?, n = 46 X 101 Newtons/m?, ¢= \/ "_+2_’7_ = 5010 m/sec,

go that
dy = Bz = A 27 = 22'3 X 101, «, = ﬁa’\— — 524 x 1010
and - . ' : T
B = -27:‘— =262 x 1010,

Following the procedure of Melachlan3, we obtain the first positive root of (7) as py = 1-799 for @ = 0:bm.
and b = 1'0 m and then C; = 93725 X102

and values of My (a1, @3 Bys Bay s 7) for dlfferent values of r are given below —

r 05 06 0-7 08 09 1-0
M, (ay ap By Bar i) 124 710%  61:67x 100  72:81x109  73-18x10°  124-6x10%®  202-9x 100
Case-1

Taking 4 = 4, = 102’ w; —7r/2 wy=min (21),
- - we obtain the variations of —u with r as shown in
figure 1, for¢ =1, 2 or 3 seconds.

Case-2
Taking 4, = Az = 10%, , = 0-01, &y = 0-05 in

(22), we obtain the variations of — u with r as shown
in figure 2, for £ = 1, 2 or 3 seconds. -

Case-3

o+ — , — , Taking 4 = 10%, £, =1 sec. in (23)’, we obtain
o5 o6 o7 o8 o9 T ro the variations of u with r as shown in figure 3, for
v = 1/2, 3/2 or 5/2 seconds,

Fig. 1— (—u) Vs r for various values of Z,
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Fig.2— (—u) Vs r for various values of f. - Fig. 3—— fu) Var for various values of ¢.

CONCLUSI ON

This paper deals with a general problem of vibrations produced in a thick hollow sphere Any partlcular
case of special interest can be obtained by ass1gmng suitable values to the parameters and functions 1nvolved
in the general solution (20).
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