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The motion of a visco-elastic fluid . contained between “two rotating circular eylinders whose axes are set Sii‘ghtly
apart is .considered. - An: approximate ‘solution  of: the "Navier-Stokes equations 'is obtained by & perturbation
method -for the- cage of small .eceentri¢ity, .- The expansions contain  a.perturbation parameter e.related to the
eccentricity e which is assumed to be small. The method entails the employment of asymptotic expansions of Bessel
functions and the results thus obtained are valid -for finite- gap between the two eylinders.* The leading terms of
the éxpansions are the exact solution to the Coustte flow of Newtonian fluid between concentric rotating oylinders.

-The transverse velocity profiles aro prosented for small ecoontricity and gap, when both the cylinders are rotating
with the same angular velocities in the same direction snd compared with the corresponding transverse vel'oeiby’
profite in Newtonian flow. o . . ) .

-~ NOMENGCLATURE

4, B Constants in the concentric problem basic flow .
d | gap ratio (Rq ’—_“ Ry o k o ’
e . eccentricity l : L

h . radial distance between inner ande‘putér éyﬁndem"

R, B, radii of inner and outer cylinders respéctivély o
E, mean radins (B, + Ry)j2 “ | E
10,2 )pc}la,r cylinderical coordinates e o
U, ¥y - congentric problem velocity eqmpo‘nentsv‘ e
u,,v; - firsh order velocity eompohen‘es‘ 7
Uy, Uy - second order velocity components |

- v,, vg, v, - velocity components

z non-dimensional independent variable , e | \ E R
Iy Bessel function of firs ki.nd and orderd = . i 5

Ya Bessel\function of second kind and order A :

® imaginary argument of Bessel ‘fm’actions

3 ‘ga,lp' ratio (d/R,) o v

€ (\eccentricity'ratio (é/d)

] radii ratio (Rl/Rz)

® speed ratio (£2,/9;) ,‘

e * density of the fluid
v, kinematic viscosity (4i/p)

*Progent address :— 'Pu‘n'ja,b Enginééring Co]lege (?ha,ndigaa;h1 -
78-M/S830ArmyNo.— 3 R
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vy coefficient of visdo-elasticity (do/p)
vy c;oeﬂiciem of cross-viscosity (¢5/p)
Q angular velocity
Q,, Q, angular velocity of inner and outer cylinders respectively k
2, concentric problem angular velocity (ﬁo/lrj
R Reynolds number (R, 2, dfv;)

During the last two decades a number of papers have been published (namely Nikitin!, Wood?, Segel®,
Kulinski and Ostrach? and Urban®) concerned with approximate solution of the basic flow for small eccentri-
city. The variations in view points taken in these papers are concerned with the coordinate system employed,
the distance between the inner and outer cylinders, the eccentricity, the rotation of the eylinders and the

- Reynolds number. A perturbation method was employed in the work of these authors and the expansions

employed a perturbation parameter related to the eccentricity e which is assumed to be small. They used

~ modified bipolar and polar coordlnate vystems. In the small gap analysis all of them have assumed the outer
cylinder to be fixed. R

Recently, Utban considered the flow of a viscous incompressible fluid between eccentric cylinders fo-
small eccentricity. An approximate solution of the Navier-Stokes equations is obtained by a perturbation
method. He obtained & second solution of the basic flow by imposing the additional geometric restriction at
- small gap between the two cylinders and employing the asymptotic expansion of Bessel functions by Meissel’s
series. This second solution is also examined by formulating a small gap boundary value problem. He also
used polar coordinate system. He employs a perturbation parameter e=(e/J). The outer boundary condition
is also not satisfied in his case. In his investigation the transverse velocity profiles are" presented for the case of
small eccentricity and when the gap & tends to zero. He also assumed the outer cylinder to be fixed.

In our analysis the two dimensional flow of an incompressible visco-elastic fluid between two rotating
non-concentric cylinders is examined. It is assumed that there is no flow in the axial direction of the cylinders.
An approximate solution to the basic flow is developed by a perturbation method for the case of small eccen-
tricity, as suggested by Urban, and valid for any gap. The method entails the employment of asymptotic ex-
pansions of Bessel functions. In our investigation a polar coordinate system is used although it is recognized
there exists an inherent disadvantage of handling the outer boundary condition since the outer boundary is
not a coordinate curve. However, it will be shown that this boundary condition can be handled adequately.

The constitutive equations of an incompressible v1sco-elastlc second order fluid as suggested by Rivlin
and Ericksen® are

T = — PG + $1 Aig + b2 Byj <+ ¢35 A Ap, | (1)
where

Aij =35 + Vi ’ 4 v ' (2)
and | |

Bij = aisj + tjsi - 20m,i Vg (3)'

where ;; is the stress tensor, 9i the metric tensor, v; the velocity vector, ¢; the acceleratlon vector p the
pressure, comma denotes covariant differentiation ‘and b1, 952, $5 are the fluid parameters.

Two dimensional flows between moving nearly concentric circular cyhnders currently are of great
interest in connection with the design of control mechanism for aircrafts and rockets, with experiments
on Helium II (detection of single quanta. of circulation in rotating Helium II7), rotor stab1hty and the
hydrodynamw stability of the lubricant film.
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) BASIC FLOW SOLUTION BY A PERTURBATION METHOD Fi:

We shall use cylinderical polar coordinates (r, 8, z) with the z-axis coinciding with the inner cylinder
axis. Let ¢ be the distance between the centers of the inner O; and outer O, cylinders and is called as
eccentricity. The radial distance between the inner and outer cylinders is denoted by % and can be considered
as a variable gap. - \ R ,

Fig. 1—Non-¢oncentric qylihders.

The eccentricity ratio e is & non-dimensional parameter defined as

. €= % i,mfwhere(){:e <~:1,, - o
Another dimensibﬁless paramétc;r’inttgaaced is; 1;1:3 g‘a:]gf:;m Sv;iéi‘_ied as o
R T e S -
. ' Ro ) ) i ‘
In the tpiangle O;-‘_Iibo of ﬁgﬁre, 1;:%%431:{1“})10}( the E;Elnelaw ,_@ni.{gieﬁi:
o hm— et n (1 g o) @
Th.e; mq’g}entpm; eéj_ua,tibp for th; iqggxflpregéiioléfﬂgvyﬁare ‘ :
A:Z:_.f . ;' L ‘:P v,-‘ 'Ui’f—_—'i”j{é’;bv e ”{: : =~ - | )
and the equation of continuity is - \ P k -~ - a -
o ' ol el s g = 0 e el

“ v 6
Since it is assumed that there is no flow in the axial direetien (i. v, = 0), " therefore the velocity and
pressure are the funetion of r-and 6 only. ‘W@@ﬁnsféi‘equatiéfn@:4l),"(.2),(3), (5).and (6) in cyhndencal po_la:
coordinate system. The flow is governed by the steady state two diimensional equations of motion and equation
of continuity in polar eylinderical coordinates. The boundary conditions for the inner cylinder are

(1) v =0 atr =R '3

(i) vp= Ry .Q; aby ;:-ﬁ_l

| ﬁ (M
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We note tha,t the velocity vector at: ‘point Pon the outer cylinder, in the figure 1, is not orthogonal to the

position vector of point P: Therefore, it is resolved mto a radlal and transverse componen. Then the boundary
conditions for ﬂ;te outer cylmder are :

(m)<;*—Qzedsmﬂa*r——Rl-{—h T l . Lo
o O L DR TUR e - B ' NG
. (@) ’Uo=Rz-92( 1»—— (—R;) sin 0) at'r*Z‘BIl—{-h. J| o

Now, we assumé that the velocity compoheh’c’s can be ekpan‘ded by a perturbation series in terms of ¢

v, (r, 0)_uo(r)—]—eu1(r 0)—1—e g (r, 0) + }

vy (r,0) = 04 (r) + ey (r, e)+ev2<¢ 6 + ©)

Tt is noted that the leading terms in (9) are the exact solution to the econcentric problem and are given
by . . - -

N g (1) =0, g (r) = 47 + — s : (10)

-where

. . A=_".,Q (’7 — p) B = - 911371—5"1—“]) ?
, | {
|

' (11)
522 N - 'Rl . ’

We pla.ce a geometric restriction upon the problem, that is, We asume ¢ to be small in companson to.
d(e<<d)wh10h1mphestha’oe<<h" -

From equahons of motion, continuity and (9), the d]ﬂ'erentlal equatlon.s for ’ohe ﬁrst order solutions are -

o 3P 3% 3%1)__
Q“( 20 )“'aﬂ“"—‘” “aral

. 7?’1 88‘“1 :
v ( s a+ ® e T

2 o 1 gy % vy Po, 1 Py vl) -
tE o Ty T e T e T e )T

| Cu- .1 aBu 1 ofw 1 ot
+02{A( 3 ‘1 S 1 3 ¢ ) + . aul

Tl T T ol * Taf? gt

CLfe Coaws g du 1 Pe 1ogty 1 ),
r qref® . A - 30ar2 rz » 3@2‘ rafar 2 90
1 ‘1‘14-’141 1 34'&1 : 2 '3 '“1 L2 2ty K % ,
+B\(_}§.—W+¢4 39‘ U TP T Y Y T
6 1 2te, 1 gty 8 gim B év;)} -

Tt arafs 7 057% _7 902r T %) T

(4B 3 3w 6 1 gy, 8ty ) } "

+kv3{ 7 (_. I 39‘30 TR e +T e | ot 12

and - T | ” e - - N - LT _
ol - o4y '
ar T8 =0 -
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Vurma, ef. al. + Plow of Visco-Elastic Fluid
- The modified boundary conditions are

(3) u, =0 atr =Ry .

() v, =0 atr=R; -

(400) uy = — 2, dsin b -atr =R,
s () v = —d (A - 7%—;5—) cos 6 at r=2Ry

Sﬁbstitutmg (9) into boundary condition (i) of (8), we get
ety (Ry 4+ B, 6) - g (Ry + b, 0) .= — D elsing

Now it is noted with the help of (4) that the perturbation parameter ¢ also appears implicitly in the
argument of the function uy, u, .. .Hence it is not possible to equate coefficients of € and ¢* directly. This
difficulty is resolved by expanding u; and u, in Taylor series about r equal to R,. = This expansion will
- exhibit explici‘ly the dependence on ¢ of u; and %, and thus making it possible to equate coefficients of
¢ and ¢ directly. In the same manner the boundary condition () of: (8) is handled. This procedure is re-
ferred to as ‘transfer of boundary conditions’ by Van Dyke®. The boundary conditions are shifted from the
perturbed. boundary to the basic boundary which corresponds to € =0. '

' First Order Solution for any Gap S
Equation (12) will have a solution of the type ~ -
v S

Substitlitiﬁg (15) into (12) gives the following ordinary differenti;al equation in U
B UIV"l— S U + = U‘ T _,;."5— ;U '""_'\_‘vlg_l_'géi vy "U + ’ U ) =0, - (16)

Again, since @, is & real function, U is supposed to be a real function. We further assume that both
the cylinders are rotating with the same angular velocity and in the same direction. Hence from (11)
we have B=0. In(16) both the real and-imaginary parts must separately be equal to zero. Henes, the two
particular solutions that will render the real and imaginary parts of (16) to be zero are 1/r* and a constant.
Since (16) is & fourth order equation two other solutions are further required.. When two solutions are
“kmown, the method of reduction of order is.employed to determine the remaining solutions which are
integrals of Bessel functions. The arbitrary constants of integration arising are evaluated from the boundary
- .conditions (14). : ‘ o o < S

Tlius the first oi:der solutions of the basic ﬂbw are

f%mm%&{[dhm+ah@]ﬁﬂl’ ;"_p Cw

%@éfﬁw*{dhwfﬁam]ﬁ} S (18)
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where Re denotes the real part and S .

r

f Jy (w) dr — —}2— f 7> Jl (w) dr
‘ ’ r . r‘k :
Iy(r) = le(w) dr — =y f'rz Y, (w)dr '
B e AT SN (19)
Lo = [n@art o [ #r@e
R, . T .
. r 1 T . .
I, (r) =f J; (w) dr + - frz Y (w)dr
. B,

B,

where
BN T 1 2 X 1/2 . o .
°T (ﬁ vy -+ vy ) SR , (20
C = : Q,dl, (Ry) — ddl, (Rz)’ ‘ ‘l ) ’
' Iy (Ry) Iy (By) — Iy (By) Iy (Ry) o
oo AL (B — Qi (B f ., @
1T LR LRy — T, (R) Iy (By) ) |

J; (w) and Y; (w) are the Bessel functions of the first - and second kind respectively with an 1magmary
argument « and of order 1.

The solutions given by (17 ) and (18) are vahd for any gap and are often referred to as the finite gap :
solution. If we take vy = 0 in the a.rgument o the solutlons are in full agreement with Urban8.
i SOLUTIONS BY ASYMPTOTIC EXPANSIONS

We will evaluate the integrals (19) arising in the solution, under the assumption that both the cylinders
‘are rotating with- the same speed i.e. B = 0. Hence in this case the argument w becomes

: __( Ai )1/27
a‘)— ui—j—A’bvg\

This a,rgument of the Bessel functions can be expressed as ‘a function of & by substltutmg A4 from (11)
and employing a geometric relations between yand 8 glven as 8§ = 2(1 — 17)/(17 + 1), 9= (2..~ 8)/ 2+ 3).

Thus, we have ’
™ —»[ oR { 4R v (2_3)2 Rt 32} ] Bl (22)

1t is observed from (22) thast for small § and for given values of B vy and By, jo| is large: Therefore, we
‘can employ the following asymptotic expansions which are vahd for large values of w and larg wl<<m.

=~

7, (w) ~ (*;%.7)”2 [eos (a7 ") > S -

From Watson?, we have

‘ m=0 - _
_sin ‘(;;,; ) > "“Zﬁ;ﬁ’ff“] (23)
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(et Sy,

and

y (1, 2m 4 1) . 42,—_'_‘1‘2,14";‘_4 (1% (A3 (=5 S
(2w)2m+1 : (Sw),; e R ;3 (sa;,),#"i R

u[\/]e ‘

Substltutmg (21) in (18) and usmg (11) a,nd the geometrlc relatlon between ) and ) glves the followmg ex-
pressuon , - : v :

~ () T e 43”'“ o
o= flﬂQi Be {[2(2—3){1 (Rz)l (Rz)——I (Ra)l (B9)}

AR AL TR ATE? (n——lg(R»Is(r» }] SRR

E Now Wlth the help of (19) (23) (24) and (25) can be evaluated which glves ﬁrst order transverse Velocﬂy

- First Order Radial Velocity

The analysis of the first order radial velocity is para,llel to. that of the ﬁrst order tranSVerse veloclty
Here we mtroduce a characterlstlc velomty of dQl , , :

Weget L ’
' - ey u ;,0»‘” e .
371(& 0) = —Za— *(,(91?"~‘ E (26)

Therefore the first order Iediel'veloci,ty bomponentls )

“1”’9"3"{[ AU VAR ARG o~

~hE L)+ GEIL =L Lo | e

K

RESULTS AND DISGUSSION ‘?

In ﬁgures the first order transverse. Veloclty are plotted agamst @ 3 new dmenslonlesa mdependent
varlable deﬁned as , o

e oA - e e .
R - L i

: 1+ +kw(from Flg 1) : 'i~ o s (28)
Wherek~ol + e cosb, if e << 1 and/or ) <<1 ‘ e »* = e e

/ s



Dax. St J., Vor. 28, Jury 1978

. . ‘ 1 . S . v
Now z hag the range — - < 2 < + ——;— A point in the fluid domin can now be prescribed by
and 6. With the help of (28) and (29) we have

' ) €

r z,Rof‘—{—w (d + e cosf) + 3 cosd

» .’rgR;‘[l;—]—wS(l—[—ﬂecosﬂ)—{——E;-oos()] .
~ We have the transverse velocity frém the following equation
Y0, 0) = () + (0,0 + o S (30)
where ';0(90) aﬁd ‘f;l(w, 6) are given from (10) and (25)‘after transforming r into . \
The 8"9 (%, 6) is plotted when the both cylinders are rotating with the same speéd (that is p=1). The
profiles are shown at §=0° and 6==180° and for eccentricity ratio 0-1 and 0-2. The values of § and v, arve

taken as 0-05 and —0-1 respectively. It is noted that = -—} corresponds to the inner boundary and z=}%
corresponds to the outer boundary.

FOGF  NON-NEWTONIAN T .08F  NON=NEWTONIAN e .
NEWTONIAN  ~enw . | " NEWTOMIAN =~ === e
. P . PLs ’//
‘ e=c €=0. e e © = 180° » T,
LIS ) . ‘ el ) ~ .04k ) o ,"./
° )  €=0y . UXTo o7 @ €z01 L
. . /J/’ : " ><‘ . ’/’, €=0
c .’/,:’ ' - - '650-2 3 ’,/'/
o] P L €=02 o - o 2
A57 o2k P 1> 102 27
>~ : i
1.CO L ) ‘ .60 . ) ) , .
-056  -0.25 o - 0.5 G0 -0.50 -0.25 o 0.25 050
Fig. 2—Transverse velocity profile. = ~ o : Fig. 3—Trangverse velocity profile,

Figure 2 depicts the transverse velocity profiles at the location #=00. Here we find that the non-New-
tonian fluid parameter reduces the magnitude of the transverse velocity in comparison to Newtonian case.
- We further note that the transverse velocity in both the cases is less than the concentric case. Figure 3 re-
veals the velocitiy profiles at the location 6=180°. It is interesting to note that the transverse velocity for the
non-Newtonian fluid is greater in comparison to Newtonian case. This phenomenon is due to the gap between
the boundaries which is reduced. Here we note that the boundary condition at the outer boundary is not
satisfied this is due to the approximate method of handling the outef boundary condition. We also.infer
that the difference between the non-Newtonian and Newtonian velocity profiles decreases . with the de-
crease of eccentricity ratio. : ‘ \
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