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In thia paper the &continuous jump in the flow parameters such as density, pressure, energy, velocity, enthalpy, 
entropy, etc., aorom the three dimensional shock wave in a dusty mediumewhich is a homogeneous mixture 
of a perfect gae and dust particles with no heat conduction or viscosity has been computed. We have also 
obtained the relations for density shock strength, volume shock strength and prossure shock strength respec- 
tively in a duaty medium. 

E'o far most of the atudies on shock waves have been done on the assumption that the underlying 
medium is a perfect gas with no heat conduction or viscosity'. But., in practice, all real mediums exhibit 
the phenomena of conduction and viscosity. Also there may be traces of small solid particles in the medium. 
The purpose of this paper is to compute the discontinuious jump in dengity, pressure, velocity, enthalpy, 
etc., across a three dimensional shock wave in a dusty medium, which is a homogeneous mixture of a per- 
fect gas and dust particles with no heat conduction and viscosity. The dust particles are assumed to be 
incompreaible a d  evenly distributed in the medium. 

Carrier1 was fist  toptudy shock waves in a dusty medium, Mishra and Srivastava2'3 studied some yro- 
perties of the shooks in a dusty medium and showed that the presence of dust particles in a medium redu- 
ces the density as well as the velocity shock strength. 

F U N D A M E N T A L  E Q U A T I O N S  
- 

Following Campbell and Pitcher4 let p* = p* ( z" t ) be the density of the dusty medium at 
a point P ( si ) at time t and pg = pg.  ( z" t ) be the density of the perfect gas. Then if 

= Po ( x" t t )  is the density of the individual dust particle and p be the ratio of the mass of the 
gas to the mass of the dust, then the mean density of the mixture p* is given by therelation 

The Rankine-Hug6niots jump conditions in dusty medium can be written as 

and 

def 
where v,' ui pi,a f ct = I ,  7I ), xi, a being tangential to shock surface anc! the square b ~ b ~ ~  
[ ] denote the difference of values on the two sides of the shock surface, of the quantity enclosed. 



- 
L 

-DEF, Sd.'J., Pop 28, J m  1978 

Thus, if f be wy panmeter, then [f ] =ti .-fl. Also, if T is tho tempara4bre a~ftl i !, r111d Cd a1.e tho 
specific h a t s  for the gas snd the dust respchvely, then 

/' 

I w 
" B='C,T . 

arid € = C U T  (6) 

DeJinition 1 : The dimensiontess quantity a*, defined by , 

t P* I a*, = - 
- P*I - fl) , 

. . 
is called the dehsity shack strength of the dusty me&i\nn. Similarly, volume a&aok strength 6*, and 
pressure shock strength &re-given by 

a*, ,+w =--- 
~ 2 -  1 +a*, (8) , 

E P I '  / 

' a s p  5 - , - (9).. 
PI + b 

" - G -- 
1 where 9 = - is th& ~pc i f i0  v~Iume. Density shock strength of the gaseous medium -ap -t ia ils611ed 6y 
P* . . ' '. 

- I. Pg 1 - pas " Ptg 
SP, - ---& - t (10) 

Pls 
4 

where plg denotea the density. of the gas in front of the shbek and pl, denotes the density of tho gas behind -- -. 
tho shook. 

- T & ~ ~ ~ ~  '1 : ' H t e r n  of a*, &he Rankine-Hugoniot equations 12)-(4) are equivalent to : '. 
* - 

PPo SP, 
r 8.;- ---- (11)  

PI* + Pw ( 1  + Gpg) I . . 

PPO 8pg . 1 
[ .i ] - -- X" / 

1 -i- apg  ) U l n ,  
(PPO 4- p1g) 

(12) 

P (1 + U) PR2 PIY S f g  
ond [ P I  = ( pp. + p s ) i ( l  + q) 4 (13) 

Proof : From equations ( 2 ) 1 4 ) ,  we have 

[ p * ] _  C ( l + P )  P : P Y , ~ ~  
PI = fG+?%lR . ulna 

( P P O +  P19)* ( 1  + 8Pg) - r 

The vator & c ~ n  be expressed as a linear combioation of three non-coplanar vectors. Thus, 
ui = un xi + @ ~ 6 , ~ .  From this .eqkation we get 

[ ui 1 = run ] Xi + [ Cia 1 -. (14)  

F r a  ( 2 )  and (7), we have 

C P * ] .  r 

[ v A n l = - -  up  or 
I p*2 - -  - 

6* - s PPo Pg ,. [*I =- --A 
I 

?&lo = - - ( 1 - t - 8 p q )  
llln 

1 + ( PPO + plv) 
' (15) 

\ '  
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def 
Also, if g a ~  = xi,, zi,j aud- 9 a b p = a S Y t  , then 

(16) [ P I  =-k'yBPB] =gap [up]  = 0 
I 

in consequence of (4). Substituting &om (16) and (16) in (14), we obtain (12). 
I 

Corohrg 1 : In terms o fvofu~e  strengthnd pressure strength, the equations ( l l ) ,  (12), (131, asaume the 
forms . , 

... - 

C T* 1 -- 8*p 1 -- 
7*1 1 3- a*, (17) - 

I 

a"7 [PI = - 7 ~ ~ 1 %  , 
, T. 1 

(19) , 

[ P I  
I 

s*, e - , > 

2J1 (20) 
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Proof : From (18), we obtain . 
7 

From (16), we obtain 

Now 

Also in consequence of (2) and (6), the equation (6) assumes the form 

Using (28) and (24) in this equation, we obtain 

In consequence of (23), this equation assumes the form (27). . 
The quantity S defined by - - 

\ 

def 
S = J Cg log f zop; P ;l~g)y 

is called the entropy of the gas. 

Theorem 3 : The jump in entropy across the shock surface is given by 

Proof : From (30), we have 

NOW J 

[ P I  P2 - =  I + -  
P1 Pl 

Substituting from (13) in this equation, we obtain (31). 

It is well known that the quantity C defined by 

&t 
c2 = (%)* . (33) 
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is thc velocity of solmd. In case of perfect dusty medium, it is given by 

Note : I t  may be noted that 6' and Ma, are dinlensionless quantities. Man is called the Mach number of 
the velocity normal to the shock surface in the a-th region. 
\ 

C O N S E Q U E N C E S  O F  R A N K I N E - H U G O N I O T  E Q U A T I O N S  

The equation (4) is a statement of the fact that the tangential components of velocity are conti-* 
nuons across the shock surface even in dusty medium. 

Theorem 4 : We have 

[ n l  = --+9. 1 
J ,  

(36) 

Proof : Substituting from (1) and (2) in (3), we obtain (34). Multiplying (12) by X b n d  summing for i, we 
obtain (35). Combining equations (35) and (27), we obtain (36). 

Dejnitiolt 2 : The quantity whose components $r/a defined by 

is called the obliquity of the shock surface ia  the T-th region. 
'> 

Theorem 5 : We have 

equivalent to 

( PPO + Plr ( 1 + 6pg ) 
4b21a = -- -a- 

PPo -I- Pl* ( 1  + 6fg)  
' $1/a (39) 

Consequently, the obliquity is proportional to density. 

Proqf : Substituting from (35) in (37), we obtain (38). &om (35), we obtain (39). 

Theorem 6 : The tangents to the stream lines onopposite ~ideg cf the shock surface and r.ormal to shock 
surface at a point P are copla~er. 

Proof : A linear relation (12' exists between ui ,, and Xi. Hence, we have the theorem. 

V O ' L U M E  S H O C K - S T R E N G T H  

Theorem 7 : The Rankine-Hngoniot equations are 

[ ] = 87* Uln  Xi , (40) 
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Proof: From (14) and (17), we get (40). From (2), (3) and (7), we get (41). From (7) and (8), we get (42). . 

Theorem 8 : The jump in entropy is given by, 

[ S ]  = J o g  log ( ( 1  - 
I ( PPo $. P l s  (PI  

Proof : Using (41) in [ S ] = J Cs P we,get (43). 

I 

P R E S S U R E  S R O C H  S T R E N G T H  

Following ~ i s h r a  and Srivastavaa we have the  ank kine-~u~oniot jump conditions as 

(1  + P) Po Pi9 1 - ' a,* 
= (PPO 4- P I )  ( 1 + .P Po PI9 . uali , 

(46) 
. a,* 1 P PO I-t pis ) Pl 

Theorem 9 : The jump in entropy is given by 

[ 8 ] = J Cg log ( ( 1  4- Sp*)  

T h m m  1 0 :  The jump in entropy can also be written as 

Proof: Using (42) and (43), we-get (48). 
' Theorem 11 : The jump in enthalpy is given by - 

Proof : Using the square of (44) in (5), (2), (23), we get (49). 
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