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Tn this paper the discontinuous jump in the flow parameters such as density, pressure, energy, velocity, enthalpy,
entropy, etc., across the three dimensional shock wave in a dusty medium-which is & homogeneous mixture
of a perfect gas and dust particles with no heat conduction or viscosity has been computed. We have also
obtained the relations for density shock strength, volume shock strength and prossure shock strength respec-

tively in a dusty medium. ‘

-

So far most of the studies on shock waves have been done on the assumption that the underlying
" medium is a perfect gas with no heat conduction or viscosity. But, in practice, all real mediums exhibit
the phenomena, of conduction and viscosity. Also there may be traces of small solid particles in the medium.
The purpose of this paper is to compute the discontinuous jump in density, pressure, velocity, enthalpy,
etc., across a three dimensional shock wave in a dusty medium, which is a homogeneous mixture of a per-
fect gas and dust particles with no heat conduction and viscosity. The dust particles are assumed to be
incompressible and evenly distributed in the medium.

Carrier! was first to study shock waves in a dusty medium, Mishra and Srivastava®’? studied some pro-
perties of the shocks in a dusty medium and showed that the presence of dust particles in a medium redu-
ces the density as well as the velocity shock strength. .

‘

FUNDAMENTAL EQUATIONS

Following Campbell and Pitcher* let p* = p* (zi,t) be the density of the dusty medium at
a point P (') at time ¢ and py = pg(a’,t) be the density of the perfect gas. Then if
po = po (@i, t) 1is the density of the individual dust particle and p be the ratio of the mass of the
gas to the mass of the dust, then the mean densiby of the mixture p* is given by the relation

1 3 1
tE_E =
P Py Po
; (14 1) py
* =
o ' g (ppo+ po) )
The Rankine-Hugoniots jump conditions in dusty medium can be written as
(14 1) popy _ (1 p) po pag » _
(Bpo+ pw) " (opo+oug) 2 0 T o
[2’]+(mg+md)[un]=0,k (3)
] - o
‘and ' %(mg‘f‘md)'[‘wz]+my[E]+md[e]+[Zmn]=L0,

def :
where v, w; i, (=1, II), z', 0 being tangential to shock surface and the square brackets

[ ]denote the difference of values on the two sides of the shock surface, of the quantity enclosed.
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Thus, if f be any p&ra.meter, then {f]: fz —f1. Also, if Tis the tempemtme ar[d o und C, are the
specific heats for the gas and the dust respectlvely, then : _ . ,

>

def . ‘
S - E:.'GIT ‘
sd . e=0,T (®).
Defimition 1 : ' The dimensionless quantity 8*, ‘ defined bv

P1<

s ca.lled the density shock stzrength of the dusty medmm Slmlla.rly, volume shock stmnvth 8% and.;
pressure ‘shock strength 8*,, are glve.n by = e

* ==
=5 = — T, i ® -
cen=tEl, e
‘where "fr"ﬁ = %; is the specific vohime. Density shock strength of the ga}eepus_i;iediuni» “Bp, mdeﬁnedby ;
elelommn
- Py Py ‘ e ‘

where Pig denotes the denmtx of the gas in front of the shock and Py denotes the denskty of the gas behind
the shock , , . C

Theorem 7 : In termsof 8* the Rank;ne-Hugomot equa,tlons (2)—«(4) are equlvalent to:

- l‘Po 8o, : ‘ o
z 8F == 2 - s 11)
f Thre T P .(.11+5pg)~ ' ),
L  wpod, | L° L '
pl= — . ny X ; ) 12
A [u,,] (oo + p1g) (1 4+ 8p)) “ o (12
o ke, L,
ond - : (7] (I‘P0+P1y) (1+8pg) e : (1)

Proof From equatlons (2)——(4), we have . RS
(ﬁ1: n(P+e>MPw%o,m
3 , . (mpo+ P ) (1+8Pg) 1

- 'F*g
The vector i can be expressed as & lmear combmatlon of three non-coplanar vectors, Thus,
wi =y X u® T From this equatlon we get ,

2.

[p] = p uz'l—'n"

. R U B S B il 7 E R (T
Fram (2) and (7), we ha‘,ve; ' T " , S e
==, e

lug] = _*8_*_,,__’*;__ By By S
WITTLES, T (kpete) (18

CUyn © L (18)
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Also, if = gag = o', 7' and_ﬂ g,,p g%y = Spﬁ N then

[ua] _[ ydg] 29";3[“5] ’ e 7' T (16)
in consequence of (4) Substltumng from (15) and (16) in (14), we obtain (12). '

Corollary 1 : In terms of Vqume strength and pressure strength the equatlons (11), (12), (13), assume the '
forms

,.‘[1.*] 8*;) o ( k”poapb ) o :
§%, = =t = TR ) Can
B Y . A L
=X (8
’ '___, : 8*,’, 2 . ’ el " o ! ‘ ‘ : ‘ (19)
[?’] T-*' 7*1 u/ o B
11 t . - B S . [ .
sff;m¢s . R PR
[éi‘ ]= — _ . BN RN @y
D ( (1 p) Py Py ) T
‘ ) [“'P0+ply . wPl,» ‘ ’
: an(wi—i-.[lp*]_-—_"l _ (1+p.)p18* :
. ; - . . #) 11." H ‘ p pl{ﬂ 'i‘Pj} o
The pmof follows by simple computation. = - e AT e
We know that the quantity % defined by B %
ST ' s i
- def e . PRRv % TR
k= H s NG |
N T e
Crpo + py) e |

where H ‘the mternal energy per umt mass, is the ( nthalpy In the case of dusty medmm His glven by

‘ mgCa“F’”dC’d S R -
o mgAmg T ’ f’r» R . 24)
H=’¢. Do
oyl (4w ppy @)
| t Cipo o+ pg) o
where p = (L* I"'__“)'Po_._&g RT, R = C’ ' — Cy and 95 is dunensmnless quﬂntlty define d by' -
, (reot py)
‘ | i |
B def __mg+md09 ) ’ (26)
- Mg kmg -
Theorem 2 : The jump in enthalpy across the shock surface i is given by
| M]*% Cmeeds, u( +8)+w(1+a)}¢§(m;
(#Po-i-pu)z(]—l—sg«)i{ Po Py P S

ﬂt is pnsslble to deﬁno g 8 in this way, because the shock uurface being a resl eurface Det | 9a B 0.
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' Proof : From (18), we ,obtain‘

-
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‘I"'Pospg . 1 : , >

is called the entropy of the gas.

Theorem 3 : The jump in entropy across the shock surfaCe is g1ven by

(1+F') Po’ P1g 8o, Qfl_)(( +8,) ‘.“P"—'_P” )—7} (81)

[Sv]=JC‘g‘log\{(1 + (epo + p1g)? (1 8p9) N
Proof . From (30), we have

FP0+P19 (‘l‘f‘apﬂ )

: . L (P2 pootpy ' )"‘7
[S]—JC'glOg{p (FP0+P19(1+8pg) (1+8Pg) , }
Now . - , . , .
| | ‘ P2 [p]
—_1
b2 T

Substituting from (13) in this equation, we obtain (31).

It is well known that the quantity‘ c deﬁn_ed‘ by

def ap)
e = ( 2p*/s

16 , | | .

6] = — — U X
b (Bpo+pg) (11 3)
From (15), we obtain ’ .
o B po Op s _
1= . (2 8) + 2, (1 5 )fut (28
L) (I"Poﬂ'—Plg)z(l’lfspy)z{Fpo_ o o b )j ¥ 8
' \ [ P | — P, — P
Now (+r)por (L4-w)popyyg (14 ) popy
' (1o + pg) ( mpo-t poy) (1po + prg)
Also in consequence of (2) and (6), the equation (5) assumes the form '
3 (my+mg) [?] +(m909+4md Qd,) [T] + (mg+ ma) - [mi—om} = 0
S ’ ‘ . (#pot+ pg)
Using (28) and (24) in this equation, we obtain
. . - o o
y? H —— = ()
Hll [ STy ] )
( Epo + Po)
In consequence of (23), this equatlon assumes the form (27).
The quantity S defined by o n -
s 2 ; ’0 og 2 |
= TR (( I4-p) po Py)Y . 130)
- PPy T Py a
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is the veloclty of sound.. In case of perfect dusty medium, it is glven by

e YD . _(epr+py) o :
(L4 1) pory S (LA p) py pig L * (33)
L ppy+ p1g) . : ; ,

Note : 1t may be noted that 8* and My, are dimensionless quantltnes M is-called the Mach number of
the velocity normal to the shock surface in the a- th reglon : ' a

4

C’ONSEQUENCES OF RANKINE HUGONIOT EQUATIONS

The equation (4) is a statement of the fact; that the tangential components of velocity are conti-"
nuous across the shock surface even in dusty medium, . .

Theorem 4 : We have

[p) = — (‘1“-1- ») po [ #Popf]_ pgv 'uzm], ‘ | (34)

v o ot gl 3
'ﬂ/‘ (#P0+P19)(1+8Pg2 i

(35)

~

(4] = — ifa ] | %)

i 3
Proof Substituting from (1) and (2) in (3), we obtam (34). Mul'r1plymg (12) by X¢ and summing for 4, we
. obtain (35). Combining. equations (35) and (27), we obtain (36).

.Deﬁm'tion 2: The quantlty whose components qu/a defined by

 def g . .
$rja = ufn e =1,2 - 37)
" 1is called the obhqu]tv of the shock surface m the - th region, . ' '\
Theorem 5 : We have | , B i
po Spg .
equivalent to i |
(#po + p1g) (14 85)) )
(39)

Hola = FPo g (1 +8p) Prle
Consequently, the obliquity is proportional to density.
' Proof : Substituting from (35) in (37), we obtain (38). From (35), we obtain (39).

Theorem 6 : The tangents to the stream lines on opposite sides cf the shock surface and 1. ormal to the shock
surface at a point P are coplaner. S

Proof : A linear relation (12 exists between u’,a and X, Hence, we have the theorem.

VOLUME SHOCK-STRENGTH

Theorem 7 : The Rankine-Hugoniot equations are { .
~ [ruil = 87-* Uln X s . , (40)

(L + p po pig ) .
. _ 8* 2n, . ‘
. Led T “D
(14 p) popy . 8% ‘
[Pl*]:_ﬂv <( ppo + pg) (1+8>) (42)
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Proof : From (14) and (17), we geb (40). From (2), (3) s.nd (7), we get (41). From (7) and (8), we gef (42)
Theorem 8 : The jump in entropy is given by- ‘ ‘

A s (1 p)popyy L N |
1= a0 (1 LA ) e ]

-

Proof : Using (41) in. [S] = J’C’,[log T :; - ,,,‘ ] we get (43).
. 0 P
‘ ( E Pt Py )

PRESSURE SHOCK STRENGTH

- Following Mishra and Srivastava? We‘hdve the Rankine-Hugoniot jump conditions as

i (mpotpg) | pd* ’ | A
[u ] - (1 + #) pg Pig U x, : S (44)
[p] =8*p , I (45)
(L+p) pop - S '
*] = . - —— o Op¥ 4
fe”] (Bps + p1g) (14+p)poprg . % — By SR (46)

(#pot pw) P
Theorem!) The jump in entropy is glven by S

, (u Po+P:w) oy
[S]_Joglog<(1+8p)( (1 ©) POPlﬂ’ ugln )r} ’ (47)

Proof : Using [8]1=J70, [log P ( (:;:r;g } ] and (45), (46), we have (47)

~ Theorem 10+ The j ]ump in entropy can also be written as
[8] =J0g\log{ (1+s,*‘) v(1’+a,*)V} : (48)

Proof : Using (42) and (43), weeget (48).
Theorem 11 : The jump in enthalpy is given by

8t (H‘-u)ip P1g Ugn? | 1 o
B le ) 0f1y 18t ! 19
k] (<1+mpopm))2 o {/(FPo“i‘Pig) il “9)
#P0+P1y e :

) Proof Usmg the squa.re of (44) in (5) (2), (23), we get (49)
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