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In this paper following Berger’s approximate plate theory for large deflections, large a.mphtude free vibrations, of
Rectangular plate, isosceles right-angled triangular plate, Equilateral triangular pla.be and. circular plate resting om
a Pasternak-type elastic foundation have been dJscussed

Large deflection of flat isotropic plates has been investigated by the use of the approximate method
offered by Berger'. Thlsg,pprommate method is based on neglecting the second invariant of middle surface
- strains in the expressionfor the total potential energy of the system. Iwinskiand Nowinski? extended the
method to orthotropic plate problems. Nowinski® has also solved same boundary value problems associa~
ted with circular and, rectangu.lar plates undergoing large deflection. Nash and Modeert found. the large

~amplitude free vibrations of rectangular and circular plates applying the technique shown by Berger
Large amplitude free vibrations of isosceles right-angled triangular plates and elliptic plates have been.
mvestlgated by Banerjee®s. Baner j ee7 found out the non-linear free and forced vibrations of different
orthotropic plates. ‘

~

The ob]ect of this ?aper is to investigate the large amplitude free vibrations of different plates
resting on a Pasternak-type of elastic foundation by Berger Method. Numerical results are also
presented in the form qf graphs for the case of a simply supported rectangular plate.

‘FORMULATION OF THE PROBLEMS

The strain energy due to bending and stretching of the middle surface in a thin plate undergoing large
deflections is given by Nash and Modeer,

2 Jf i ol s 25 2= (25 o o

where , -

w = deflection of the plate normal to the middle plane,

V? = Laplacian operator,
ER

D = flexural rigidity of the plate = 20 —A)’

~ E = Young’s modulus,
h = thickness of the plate,
v = Poisson’s ratio,
e == first invariant of the middle sirface straing = ex + ¢y, -
s = gecond invariant of the mlddle surface strains.
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u, v = displacements along @— and y— axes ?respecﬁiveiy.”
The foundation reaction p of the Pasternak elastic model is giiren. by" Kerr®
p=Ku—GVw , | & @

where K is the foundation constant and G (a second foundation constant)is the :sheaf modulus. -

The potential energy V, of the distributéd foundation reaction p (w, ‘y)‘éé“gi"veﬂ by(2) is

R ,V?"‘.’f’f%f~f[3";zf:€:{('§ib?,')2‘+ (& VI asar e

,Addiﬁg (1) and (3), the ',tota,l potentia,rl'ene_rgy‘ Vl'—,V2 of the sys‘témytékés ‘the:forﬁl’_‘
0 ‘ ’ 3 v 12 ' a% B?W,. i '

D L 1, ~
V=g ﬂ '[(V?’wx“ + g € —2(1=y) {‘zé et 38 g

R (R

The kinetic energy- of the plate 1s |
~ B fLip o o+ w2 | dwd - 6 |

“where p denotes the density of the plate material.

~ Neglecting egand applying Hamilton’s principle and Euler differentiél_ e_quétigixs of the vamtmna.l prébiem,
we finally ebtain thefollowing approximate differential equation for w in the absence of inertia effects in

the plane of-the plated : S

Ry G 1. Kw 12 4 -
Viw — [mgf(t)"- ¥) ]V2w+ ) +W "::ig'=0: C (6)
where ' ’ \ SR
Y )
Cp? = 12D
and ’ )
! . . 7."“ R 1
‘Tm ?y+%[(3m)+ 3y "12“”' L O

where « is a real normalised constan: of integration.
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SOLUTION OF THE PROBLEMS.
Rectangular plate with all the edges szmply supported '

Let us consider the free vibrations of aflat recta,ngular plate Wlth mdes of lengths 2¢ and 2bin the zand
y directions respectively and with the centre as the origin of co-ordinates. The deflections are considered to
~ have the order of magnitude of the plate thickness. :

The boundary conditions for simply supported edges are

=% 0 on o=
> =W s Py =0 on s=+fa| | i
2%w ®
V=W o= Ed =0 on Y= 4+ b | ~
Let us assume , v, w, in the followmg forms satisfying conditions (8)
(@, 9,8) = Z 9s (y) sm L H(t) y , o k I )
s=1 » N R :
vm%Q=ZSkWNM%WQmw5- S 10
1 8=0 . )
(2] w'/ . . H . . . N
w (@, y, ) = Z ZAM" C0S B ° COS v, y " F(t) (11)
‘ ‘ m=0 n=0 N - .
in which
sw
w= - |
2m + D (27& -+ 1) T
Bm = T 9 Yn = %

To determine the fundamental mode of vlbratlon we putm =n _.0 in (11) Consulerlng (9), (10), (11) .
and: (7) and taking .

) = o) =Ho) =1 | oo (12)
we obtain ‘ . | . P
Tnserting (11), (12) and (13) in (6) with m = n =0, we finally get ' o ‘

Py F 488 =0 , o (14)
where s u ' " :

=T F G ) T ) s
! ‘ 4 42 2 2 B

5= 41053 ( ; '1_)
which is to be solved subjecbfto the initial conditions

FO) =1 , j(0)=0
Hence the solution of (14) is determined as ) .
Pty =on(w®, 0 , ~ -~ .. (15)
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oy + 8 °

Here w* and 6 are positive constants for somepar‘olcula,r values of K and. G and on s J acob1 s elliptic -
function. : /

~ w*z-—'y—}—SandB—

The non-linear time period 7* of cn (w* ¢,6) is given by T* = _4—2 o, - (16)
where @ is the complete elliptic integral of the first kind.

The usual linear time period T is put as

' 2
- =%
where w is determined from the equation , ‘
: K 12 3w . )

Wih Ve Vet e w4 o =0 | an

ar
w ~_=AO° cos ﬂo - cos"yoy * - 608 wt._‘ |
Hence o .
| 11 1,1\
s [(—fﬁ) + {4"* 6 (77 )]

G (i O Ee e

where

= Azm/hz

When K @nd G become zero in the limit, then equation (18) takes the form

| | ™ 26 4 | c o
LBy ] R
a8 investigated by Nash and Modeer* without any elastic foundation.

Simply supported isosceles right-ongled tmamgulwr plate
Let usnow consider thatthe edges of the flat plateresting on apasternak-type of elastlc foundatlon be

t=y=0and z+y=a

For such a plate the boundary conditions are

2w

Cu == Y =\o | a =0, |
. = ‘3:;2 =0 / atw+y‘= a,
where . .
:’7,:«/“"‘( ;w ~+vaay )
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b«ympatlble w1th the bound.ary condltlons the suitable expressions for u, v, w can be taken as

]

Ty == zBﬂsinoc,,w[ cos_oc,.y«—l— $in oy T — -7;—" ] H (),
n=1,8.i0., . ' )

v = Z\'Bﬂsin an¥ [ €08 oc,,a; — gin a,.y + ] Q®,
n=1,8 .c..0s

A

w =ZA,,. [sm2amw.smotmy+sm2amy sin &y ]‘.XF(t), (

m=;1,8,4.00s.

Substltutmg the expressions of «, v and w in (7) and usmg (12), mtegra,tlon over the area of the plate ylelds
after necessary simplification .

s w2 R

and the governing equation is given by

FoAF+s=0, @y
~ where ' ’ '
L N K Ro2
Y“'[ @ T T &D +"D"]_—“‘12 s )
5 = DmA0E
49t

Equa,tlon (21) can be solved as in the case of recta,ngular plate.

The ratio between the non- lmear time period and the linear time penod is

e [Bedp(e-mO)y
r W [ %‘5—, (1+3pe ) "411) (K—'— F::G )]§ A )
wherve A . | |
,gz.=;‘413/;,§
1e@dingto | N
T - [T .. o

in absence of elastxc foundatlon as offered by Baner]ee5
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Fig, 1—Equilateral triangularifiat plate. SN

Szmply Supported Equilateral Tmmgulwr Plate ;

Trilinear co-ordinates : Let ABC be an equilateral triangle of side a. The centroid O in the undeflected
middle surface is taken as the origin of co-ordinates. The axes OX and, OY are taken perpendicular and
parallel to BC respectively. If p,, p,, p; be three perpendiculars from a point p (v, y) within the triangle
on AC, ABand BC respectlvely, 7, tzhe radius of the inscribed cirele, then

—-7'—," 2 \/3 9.

e 2 V 5,
=7 + 2 + ——2—' Y,
. Ps=1r—77,
and ,
el e e 3” = \/3 @ = Aq (say).
‘Let us take an equilateral trlangular flat plate of s1de aresting on 2 Pastemak-type of ela,stm foundatlon
In this case, we have the boundary conditions : ‘ § '
w=Viw=0 on p= pg—.pa_-o.

we assume,
: . u=0v=0 —-on p1=p2=*-'-=p3-3—40.
The above conditions will be satisfied if the expressions for %, v and w are taken in the following forms :

o i\/g B,,.[smﬁ,,.(pz—l-ps) —l— si? 3_»; (P1+P3)]H(t),

m=1

i Bm[sil;lsm(fﬁ‘f'Ps):_ éin Sm (Pz‘l‘?a)]@(t),

m =1

¢
!

il

4,[ n s+ sind,py +ein s, | PO,

i
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]
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where

o 24w,
8; = 3 ,t=m,n,
. a

Proceeding in the similar manner as deduced in the previous article, we thus obtain for the fundamental
mode of vibration : ,

o = ——;4—8;;%;4—12 (24)
"l‘o\evaluate F (t) we have the reqﬁired equa.tioril _ |
. , ‘ | F+y;F+aF3=o v / (25)
where E ; |
1674 4s2G. K ] BoR
y=[ Py —/,.?D + -5 ] T
s o Jomaior
Here; iatio of T* and T is gix?en by ¢ \ ‘ :
r_se  |wrw(-S)f
T = = -[%(IJFMQ) '\"?7‘117(3* 4;;@ )]M,‘, .(26)
Where | | |
B = ‘f:: .
Iii. the absence of elastic foundatioh/ I(f = G =0,
Hence o
i f* = '2“0 [ 1‘,+ 9 ﬁ,]—i' L o (21

Circular Plate

Ali'approxima.te analysis of a ﬂét 6ircular plate baving i;cs boundary elasﬁcally restrained against
rotation is offered here. Let the circular plate of radius R be axisymmetric and be placed on a;na;glaag;?c
foundation of Pasternak-type. b

' The transformations of equations (6) and (7 ), into polar co-ordinates lead to

V‘w—-[a"‘F’(t)-—-—j]V"/w+7}-@k+ ,.2102’),, 3’;’ =0 (%)

£
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and

i

% 1 3w‘2 azkz .
+7 7 (37‘) =1 f(t),

" where ‘ d2 d

| 'fm=ﬂmw

Lét us as§ume‘t-hat Q 1 - :
e=f P,

|  w=TWEOFY .

’ Combmmg(z&)aud(%l) we have “

12 &F

P G - ,
AW - [ @Po—F | PO v2w+—5 Fu>w+ o TE =0

o

A solution is possible if"

Al L4 vwo

= &b an — y
oo ¢ ed T ¢
Hence, W =Ad,(p r) P

‘ ‘where J is the Bessel functxon of the first klnd of order zero.

Consxderfng equatlons (32) and, (33), we r\1ow obtain

BT +( ) 26 K ) BCE . RO Fs‘

e t\¢—D *tp) m Ft @ =0

The solution of this equation is put as
FP@)=ocn(uw*t, &

where. : R

: & K @
n— M ¥ : v e Ry
¥ = ——f [1,'4'; & T Da D& ]'

62 =

* K G .
2[“#77 t+DaF T DS ]
‘From (29) ana_(30)'we get. ‘ '

ARy AP [
e ['Jx’(cp’r)+Jo’(<Pr)—

o, (o7). 7y () ]
¢r )

For w to vanish on the boundary r = R, ¢ musft‘ be a root of -

nem=o.

. (29)

(30)

.(31) |
(32)

T )

6y

(35)

@)

(37)
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Again for w=0 ~ on r = R, we have from (36)
. o2 B2 ‘ '
L L] | (38)
Thus the ratio T*/T is given by o : ; ,
T* 206 1

T 7

T 64 K G ' @
[1+ h2.'J12(¢R)+AD?4. T D¢ ]% )

When K and G become zero in the limit, we get the corresponding result
T* 260 642

T = Ta [ 1+ i
as obtained by Nash and Modeer4.

e | (40)

K\

 NUMERICAL RESULTS
Numerical results are offered graphically in Fig. 2 for simply‘supported‘ rectangular plate in terms
of the aspect ratio %— = 1 to give rise an idea of the variation of the ratio T*/T given by (18)

with respect to different values of B having considered some particular values of non-dimensional

' K at G a? _
foundation quulus A ( = ; ) and p ( = Da )

e

NASH AND
MODEER {REF (4)}

O\9+

O7-

Q5

(<23
| X . . N

/

03 ¥ T T T ]
o o2 o4 os o8 o
B. !

Pig. 2—Variation of the ratio of /T with respect to different values of B.

It is apparent that the results of Nash and Modeeré for large amplitude free vibrations of rectangular
plates without any elastic foundation coincides with that of the same plate with bja =1 for
A =5, p ==1. These results are also plotted by way of comparison.

8
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