LARGE AMPLITUDE FREE VIBRATIONS OF PLATES RESTING ON A PASTERNAKTYPE ELASTIC FOUNDATION

J. C. Kunda
B. B. Evening College, Agartala, Tripura
\&
S. Basuli
Tripara Engineering College, Barjala

(Received 17 January, 1977)
In this paper following Berger's approximate plate theory for large deflections, large amplitude free vibration of Rectangular plate, isosceles right-angled triangular plate, Equilateral triangular plate and circular plate reating on a Pasternak-type elastic foundation have been discussed.

Large deflection of flat isotropic plates has been investigated by the use of the approximate method offered by Berger ${ }^{1}$. This ppproximate method is based on neglecting the second invariant of middle surface strains in the expression for the total potential energy of the system. Iwinski and Nowinski ${ }^{2}$ extended the method to orthotropic plate problems. Nowinski ${ }^{8}$ has also solved same boundary value problems associated with circular and rectangular plates undergoing large deflection. Nash and Modeer ${ }^{4}$ found the large amplitude free vibrations of rectangular and circular plates applying the technique shown by Berger Large amplitude free vibrations of isosceles right-angled triangular plates and elliptic plates have been. investigated by Banerjee ${ }^{5,6}$. Banerjee ${ }^{7}$ found out the non-linear free and forced vibrations of different orthotropic plates.

The object of this paper is to investigate the large amplitude free vibrations of different plates resting on a Pasternak-type of elastic foundation by Berger Method. Numerical results are also presented in the form of graphs for the case of a simply supported rectangular plate.

TORMULATIONOFTHEPROBLEMS

The strain energy due to bending and stretching of the middle surface in a thin plate undergoing large deflections is given. by Nash and Modeer.

$$
\begin{equation*}
\nabla_{1}=\frac{D}{2} \iint\left[\left(\nabla^{2} w\right)^{2}+\frac{12}{h^{2}} e^{2}-2(1-v)\left\{\frac{12}{h^{2}} e_{2}+\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}-\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right\}\right] d x d y \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
w & =\text { deflection of the plate normal to the middle plane }, \\
\nabla^{2} & =\text { Laplacian operator, } \\
D & =\text { flexural rigidity of the plate }=\frac{E h^{3}}{12\left(1-\nu^{2}\right)} \\
E & =\text { Young's modulus, } \\
\hbar & =\text { thickness of the plate } \\
\nu & =\text { Poisson's ratio, } \\
e & =\text { first invariant of the middle surface strains }=\epsilon_{x}+\epsilon_{y}, \\
2 & =\text { gecond invariant of the middle surface strains } \\
& =\sigma_{y}-\frac{1}{4} \gamma^{2} x y
\end{aligned}
$$

$$
\begin{aligned}
& \epsilon_{u}=\frac{\partial u}{\partial x}+\frac{1}{2}\left(\frac{\partial w}{\partial x}\right)^{2} \\
& \epsilon_{y}=\frac{\partial v}{\partial y}+\frac{1}{2}\left(\frac{\partial w}{\partial y}\right)^{2}, \\
& \gamma_{x y}=\frac{\partial u}{\partial x}+\frac{\partial v}{3 y}+\frac{\partial w}{\partial x} \frac{\partial w}{\partial y}, \\
& u, v=\text { displacements along } x-\text { and } y \text { axes respectively. }
\end{aligned}
$$

The foundation reaction p of the Pasternak elastic model is given by Kerr ${ }^{8}$

$$
\begin{equation*}
p=K v-G \nabla^{2} v, \tag{2}
\end{equation*}
$$

where K is the foundation constant and G (a second foundation constant) is the shear modulus.
The potential energy ∇_{2} of the distributed foundation reaction $p(x, y)$ as given by (2) is

$$
\begin{equation*}
\nabla_{2}=-\frac{1}{2} \iint\left[K w^{2}-G\left\{\left(\frac{\partial w^{2}}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right]\right] d x d y \tag{3}
\end{equation*}
$$

Adding (1) and (3), the total potential energy $V_{1}-V_{2}$ of the system talkes the form

$$
\begin{align*}
\nabla & =\frac{D}{2} \iint\left[\left(\nabla^{2} w\right)^{2}+\frac{12}{h^{2}} e^{2}-2(1-v)\left\{\frac{12}{h^{2}} e_{2}+\frac{\partial^{2} w}{\partial x^{2}} \frac{\partial^{2} w}{\partial y^{2}}\right.\right. \\
& \left.\left.-\left(\frac{\partial^{2} w}{\partial x \partial y}\right)^{2}\right]+\frac{K w^{2}}{D}-\frac{G}{D}\left[\left(\frac{\partial w}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right]\right] d x d y \tag{4}
\end{align*}
$$

The kinetic energy of the plate is

$$
\begin{equation*}
T=\frac{\rho h}{2} \iint\left[\dot{u}^{2}+\dot{v}^{2}+w^{2}\right] d x d y, \tag{5}
\end{equation*}
$$

where p denotes the density of the plate material.
Neglecting e_{5} and applxing Hamilton's principle and Euler differential equations of the variational problem, We finally obtain the following approximate differential equation for w in the absence of inertia effects in the plane of the plate ${ }^{3}$:

$$
\begin{equation*}
\nabla^{4} w-\left[\alpha^{2} f(t)-\frac{G}{D}\right] \nabla^{2} w+\frac{K w}{D}+\frac{12}{h^{2} C^{2} \rho^{2}} \frac{g^{2} w}{\partial^{2}}=0, \tag{6}
\end{equation*}
$$

where

$$
C \rho^{-2}=\frac{\rho h^{3}}{12 D}
$$

and

$$
\begin{equation*}
e=\frac{\partial u}{3 x}+\frac{\partial^{v}}{\partial y}+\frac{1}{2}\left[\left(\frac{\partial^{w}}{\partial x}\right)^{2}+\left(\frac{\partial w}{\partial y}\right)^{2}\right]=\frac{\alpha^{2} h^{2}}{12} f(t), \tag{7}
\end{equation*}
$$

where α is a real normalised constan of integration.

SOLUTIONOFTHE PROBLEMS
Rectangular plate with all the edges simply supported
Let us consider the free vibrations of a flat rectangular plate with sides of lengths $2 a$ and $2 b$ in the x and y directions respectively and, with the centre as the origin of co-ordinates. The deflections are considered to have the order of magnitude of the plate thickness.

The boundary conditions for simply supported edges are

$$
\left.\begin{array}{l}
u=w=\frac{\partial^{2} w}{\partial x^{2}}=0 \text { on } x= \pm a \tag{8}\\
v=w=\frac{\partial^{2} w}{\partial \bar{y}^{2}}=0 \quad \text { on } y= \pm b
\end{array}\right\}
$$

Let us assume u, v, w, in the following forms satisfying conditions (8)

$$
\begin{align*}
& u(x, y, t)=\sum_{s=1}^{\infty} g_{s}(y) \sin \alpha_{s} x \cdot H(t), \tag{9}\\
& v(x, y, t)=\sum_{s=0}^{\infty} l_{s}(y) \cos \alpha_{s} x \cdot Q(t), \tag{10}\\
& w(x, y, t)=\sum_{m=0}^{\infty} \sum_{n=0}^{\infty} A_{m_{n}} \cos \beta_{m} x \cdot \cos \gamma_{n} y \cdot F(t), \tag{11}
\end{align*}
$$

in which

$$
\begin{align*}
& \alpha_{A}=\frac{s \pi}{a}, \\
& \beta_{m}=\frac{(2 m+1) \pi}{2 a}, \gamma_{n}=\frac{(2 n+1) \pi}{2 b} \tag{11}
\end{align*}
$$

To determine the fundamental mode of vibration we put $m=n=0$ in (11). Considering (9), (10), and (7) and taking

$$
\begin{equation*}
F^{2}(t)=Q(t)=H(t)=f(t) \tag{12}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\alpha^{2}=\frac{3 \pi^{2} A_{00}^{2}}{8 h^{2}}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right) \tag{13}
\end{equation*}
$$

Inserting (11), (12) and (13) in (6) with $m=n=0$, we finally get

$$
\begin{equation*}
\ddot{F}+\gamma \vec{F}+\delta F^{3}=0, \tag{14}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma=\frac{h^{2} C \rho^{2}}{12}\left[\frac{\pi^{2}}{4}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\left\{\frac{\pi^{2}}{4}\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)-\frac{G}{D}\right\}+\frac{K}{D}\right], \\
& \delta=\frac{\pi^{4} A^{2}{ }_{00} C_{\rho}{ }^{2}}{128}\left(\frac{1}{\dot{a}^{2}}+\frac{1}{b^{2}}\right)^{2}
\end{aligned}
$$

which is to be solved subject to the initial conditions

$$
F(0)=1, \quad \dot{F}(0)=0
$$

Hence the solution of (14) is determined as

$$
\begin{equation*}
F(t)=c n\left(\omega^{*} t, \theta\right) \tag{15}
\end{equation*}
$$

where

$$
\omega^{* 2}=\gamma+\delta \text { and } \theta^{2}=\frac{\delta}{2(\gamma+\delta)}
$$

Here ω^{*} and θ are positive constants for some particular values of K and G and $c n$ is Jacobi's elliptic function.

The non-linear time period T^{*} of on $\left(\omega^{*} t, \theta\right)$ is given by $T^{*}=\frac{4 \theta}{\omega^{*}}$,
where Θ is the complete elliptic integral of the first kind.
The usual linear time period T is put as

$$
T=\frac{2 \pi}{\omega}
$$

where ω is determined from the equation
with

$$
\begin{gather*}
\nabla^{4} w+\frac{G}{D} \nabla^{2} w+\frac{K}{D} w+\frac{12}{h^{2} C_{\rho}^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \tag{17}\\
w=A_{00} \cos \beta_{0} x \quad \cos \gamma_{0} y \cdot \cos w t .
\end{gather*}
$$

Hence

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi} \cdot\left[\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}+\frac{4}{\pi^{4} D}\left\{4 K-\pi^{2} G\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\right\}\right]^{\frac{1}{2}},\left[\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)^{2}\left(1+\frac{3}{2} \beta^{2}\right)+\frac{4}{\pi^{4} D}\left\{4 K-\pi^{2} G\left(\frac{1}{a^{2}}+\frac{1}{b^{2}}\right)\right\}\right]^{\frac{1}{2}}, \tag{18}
\end{equation*}
$$

where

$$
\beta^{2}=A^{2}{ }_{00} / h^{2}
$$

When K and G become zero in the limit, then equation (18) takes the form

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi}\left[1+\frac{3}{2} \beta^{2}\right]^{-\frac{1}{2}} \tag{19}
\end{equation*}
$$

as investigated by Nash and Modeer ${ }^{4}$ without any elastic foundation.

Simply supported isosceles right-angled triangular plate

Let usnow consider that the edges of the flat plateresting on a pasternak-type of elastic foundation be $x=y=0$ and $x+y=a$.
For such a plate the boundary conditions are

$$
\begin{aligned}
u=w=\frac{\partial^{2} w}{\partial x^{2}}=0 & \text { at } x=0, \\
v=w=\frac{\partial^{2} w}{\partial y^{2}}=0 & \text { at } y=0, \\
w=\frac{\partial^{2} w}{\partial \eta^{2}}=0 & \text { at } x+y=a,
\end{aligned}
$$

where

$$
\frac{\epsilon}{\partial \eta}=\frac{1}{\sqrt{2}}\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}\right)
$$

Kunda \& Basuli : Large Amplitude Free Vibration of Plates

Compatible with the boundary conditions the suitable expressions for u, v, w can be taken as

$$
\begin{aligned}
& u=\sum_{n=1,3, \ldots \ldots .}^{\infty} B_{n} \sin \alpha_{n} x\left[\cos \alpha_{n} y+\sin \alpha_{n} x-\frac{n \pi}{4}\right] H(t), \\
& v=\sum_{n=1,3, \ldots \ldots .}^{\infty} B_{n} \sin _{\alpha_{n}} y\left[\cos \alpha_{n} x-\sin \alpha_{n} y+\frac{n \pi}{4}\right] Q(t), \\
& w=\sum_{m=1,3, \ldots \ldots}^{\infty} A_{m}\left[\sin 2 \alpha_{m} x_{0} \sin \alpha_{m} y+\sin 2 \alpha_{m} y \cdot \sin \alpha_{m} x\right] \times F_{(}(t), \\
& \alpha_{i}=\frac{i \pi}{a}, i=n, m .
\end{aligned}
$$

Substituting the expressions of u, v and w in (7) and using (12), integration over the area of the plate yields after necessary simplification

$$
\begin{equation*}
\alpha^{2}=15\left(\frac{A_{1} \pi}{a h}\right)^{2} \tag{20}
\end{equation*}
$$

and the governing equation is given by

$$
\begin{equation*}
\ddot{F}+\gamma F+\delta F^{3}=0, \tag{21}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma=\left[\frac{25 \pi^{4}}{a^{4}}-\frac{5 \pi^{2} G}{a^{2} D}+\frac{K}{D}\right] \frac{h^{2} C_{\rho}{ }^{2}}{12}, \\
& \delta=\frac{25 \pi^{4} A_{1}{ }^{2} C_{\rho}{ }^{2}}{4 a^{4}}
\end{aligned}
$$

Equation (21) can be solved as in the case of rectangular plate.
The ratio between the non-linear time period and the linear time period is

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi} \frac{\left[\frac{25}{a^{4}}+\frac{1}{\pi^{4} D}\left(K-\frac{5 \pi^{2} G}{a^{2}}\right)\right]^{\frac{1}{2}}}{\left[\frac{25}{a^{4}}\left(1+3 \beta^{2}\right)+\frac{1}{\pi^{4} D}\left(K-\frac{5 \pi^{2} G}{a^{2}}\right)\right]^{\frac{1}{2}}} \tag{22}
\end{equation*}
$$

where

$$
\beta^{2}=A_{1}^{2} / h^{2}
$$

leading to

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \theta}{\pi}\left[1+3 \beta^{2}\right]^{-\frac{1}{2}} \tag{23}
\end{equation*}
$$

in absence of elastic foundation as offered by Banerjee ${ }^{5}$.

Fig. 1-Equilateral triangularifiat plate.

Simply Supported Equilateral Triangular Plate

Trilinear co-ordinates : Let $A B C$ be an equilateral triangle of side a. The centroid O in the undeflected middle surface is taken as the origin of co-ordinates. The axes $O X$ and $O Y$ are taken perpendicular and parallel to $B C$ respectively. If p_{1}, p_{2}, p_{3} be three perpendiculars from a point $p(x, y)$ within the triangle on $A C, A B$ and $B C$ respectively, r, the radius of the inscribed circle, then

$$
\begin{aligned}
& p_{1}=r+\frac{x}{2}-\frac{\sqrt{3}}{2} y \\
& p_{2}=r+\frac{x}{2}+\frac{\sqrt{3}}{2} y \\
& p_{3}=r-x
\end{aligned}
$$

and

$$
p_{1}+p_{2}+p_{3}=3 r=\frac{\sqrt{3}}{2} a=\lambda_{z}(s a y)
$$

Let us take an equilateral triangular flat plate of side a resting on a Pasternak-type of elastic foundation.
In this case, we have the boundary conditions:

$$
w=\nabla^{2} w=0 \quad \text { on } \quad p_{1}=p_{2}=p_{3}=0
$$

we assume,

$$
u=v=0 \quad \text { on } \quad p_{1}=p_{2}=p_{3}=0
$$

The above conditions will be satisfied if the expressions for u, v and w are taken in the following forms :

$$
\begin{aligned}
& u=\sum_{m=1}^{\infty} \sqrt{3} B_{m}\left[\sin \delta_{m}\left(p_{2}+p_{3}\right)+\sin \delta_{m}\left(p_{1}+p_{3}\right)\right] H(t) \\
& v=\sum_{m=1}^{\infty} B_{m}\left[\sin \delta_{m}\left(p_{1}+p_{3}\right)-\sin \delta_{m}\left(p_{2}+p_{3}\right)\right] O(t) \\
& w=\sum_{n=1}^{\infty} \quad A_{n}\left[\sin \delta_{n} p_{1}+\sin \delta_{n} p_{2}+\sin \delta_{n} p_{3}\right] \mathscr{F}(t)
\end{aligned}
$$

where

$$
\delta_{i}=\frac{2 i \pi}{\lambda_{a}}, i=m, n .
$$

Proceeding in the similar manner as deduced in the previous article, we thus obtain for the fundamental mode of vibration

$$
\begin{equation*}
\alpha^{2}=\frac{48 \pi^{2} A_{1}^{2}}{a^{2} h^{2}} \tag{24}
\end{equation*}
$$

To evaluate $F(t)$ we have the required equation

$$
\begin{equation*}
\vec{F}+\gamma_{w} \boldsymbol{F}+\delta \vec{F}^{3}=0 \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma=\left[\frac{16 \pi^{4}}{\lambda_{\Delta}^{4}}-\frac{4 \pi^{2} G^{2}}{\lambda_{\mathrm{a}}^{2} D}+\frac{K}{D}\right] \frac{h^{2} C_{\rho}^{2}}{12}, \\
& \delta=\frac{16 \pi^{4} A_{1}^{2} C_{\rho}^{2}}{\lambda_{a}^{2} a^{2}}
\end{aligned}
$$

Here ratio of T^{*} and T is given by

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi} \cdot \frac{\left[\frac{16}{\lambda_{a}^{4}}+\frac{1}{\pi^{4} D}\left(K-\frac{4 \pi^{2} G}{\lambda_{\Omega}^{2}}\right)\right]^{\frac{1}{2}}}{\left[\frac{16}{\lambda_{4}^{4}}\left(1+9 \beta^{2}\right)+\frac{1}{\pi^{4} D}\left(K-\frac{4 \pi^{2} G}{\lambda_{\varepsilon}^{2}}\right)\right]^{\frac{1}{2}}}, \tag{26}
\end{equation*}
$$

where

$$
\beta^{2}=\frac{A_{1}^{2}}{h^{2}}
$$

In the absence of elastic foundation $K=G=0$.
Hence

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \theta}{\pi}\left[1+9 \beta^{2}\right]^{-\frac{1}{2}} \tag{27}
\end{equation*}
$$

Circular Plate

An approximate analysis of a flat circular plate having its boundary elastically restrained against rotation is offered here. Let the circular plate of radius R be axisymmetric and be placed on an elastic foundation of Pasternak-type.

The transformations of equations (6) and (7) into polar co-ordinates lead to

$$
\begin{equation*}
\nabla^{4} w-\left[a^{2} F^{2}(t)-\frac{G}{D}\right] \nabla^{2} w+\frac{K}{D} w+\frac{12}{h^{2} C_{\rho}^{2}} \frac{\partial^{2} w}{\partial t^{2}}=0 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
e=\frac{\partial u}{\partial r}+\frac{u}{r}+\frac{1}{2}\left(\frac{\partial w}{\partial r}\right)^{2}=\frac{\alpha^{2} h^{2}}{12} f(t), \tag{29}
\end{equation*}
$$

where

$$
\begin{aligned}
& \nabla^{2}=\frac{d^{2}}{d r^{2}}+\frac{1}{r} \frac{d}{d r} \\
& f(t)=F^{2}(t)
\end{aligned}
$$

Let us assume that

$$
\begin{gather*}
u=f(r) F^{2}(t) \tag{30}\\
w=W(r) F(t) \tag{31}
\end{gather*}
$$

Combining (28) and (31) we have
$F(t) \nabla^{4} W-\left[\alpha^{2} F^{2}(t)-\frac{G}{D}\right] F(t) \nabla^{2} W+\frac{K}{D} F(t) W+\frac{12}{h^{2} C_{P}^{2}} \frac{d^{2} F}{d t^{2}} W=0$
A solution is possible if

$$
\begin{align*}
& \frac{\nabla^{4} W}{W}=\varphi^{4} \text { and } \frac{\nabla^{2} W}{W}=-\varphi^{2} \tag{33}\\
& W=A J_{0}(\varphi r) \tag{34}
\end{align*}
$$

Hence,
where J_{0} is the Bessel function of the first kind of order zero.
Considering equations (32) and (33), we now obtain

$$
\begin{equation*}
\frac{d^{2} F}{d t^{2}}+\left(\varphi^{4}-\frac{\varphi^{2} G}{D}+\frac{K}{D}\right) \frac{h^{2} C_{\rho}^{2}}{12}, F+\frac{h^{2} C_{\rho}^{2} \varphi^{2} \alpha^{2}}{12} F^{3}=0 \tag{35}
\end{equation*}
$$

The solution of this equation is put as

$$
F(t)=c n\left(\omega^{*} t, \theta\right),
$$

where

$$
\begin{aligned}
\omega^{* 2} & =\frac{h^{2} C_{\rho}^{2} \varphi^{4}}{12}\left[1+\frac{a^{2}}{\varphi^{2}}+\frac{K}{D \varphi^{2}}-\frac{G}{D \varphi^{2}}\right] \\
\theta^{2} & =\frac{1}{2\left[1+\frac{\varphi^{2}}{\alpha^{2}}+\frac{K}{D \alpha^{2} \varphi^{2}}-\frac{G}{D \alpha^{2}}\right]}
\end{aligned}
$$

From (29) and (30) we get

$$
\begin{equation*}
f(r)=\frac{\alpha^{2} h^{2} r}{24}-\frac{A^{2} \varphi^{2} r}{4}\left[J_{1}^{2}\left(\varphi^{2} r\right)+J_{a}^{2}(\varphi r)-\frac{2 J_{0}(\varphi r) \cdot J_{1}(\varphi r)}{\varphi r}\right] . \tag{36}
\end{equation*}
$$

For w to vanish on the boundary $r=R, \varphi$ must be a root of

$$
\begin{equation*}
J_{0}(\varphi R)=0 \tag{37}
\end{equation*}
$$

Again for $\quad u=0 \quad r=R$, we have from (36)

$$
\begin{equation*}
\frac{a^{2} h^{2}}{6}=A^{2} \varphi^{2}\left[J_{1}^{2}(\varphi R)\right] \tag{38}
\end{equation*}
$$

Thus the ratio $T * / T$ is given by

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi} \cdot \frac{1}{\left[1+\frac{6 A^{2}}{h^{2}} \cdot J_{1}{ }^{2}(\varphi R)+\frac{K}{D \varphi^{4}}-\frac{G}{D \varphi^{2}}\right]^{\frac{1}{2}}} \tag{39}
\end{equation*}
$$

When K and G become zero in the limit, we get the corresponding result

$$
\begin{equation*}
\frac{T^{*}}{T}=\frac{2 \Theta}{\pi}\left[1+\frac{6 A^{2}}{h^{2}} \cdot J_{1}^{2}(\varphi R)\right]^{-\frac{1}{2}} \tag{40}
\end{equation*}
$$

as obtained by Nash and Modeer ${ }^{4}$.

NUMERICAL RESULTS

Numerical results are offered graphically in Fig. 2 for simply supported rectangular plate in terms of the aspect ratio $\frac{b}{a}=1$ to give rise an idea of the variation of the ratio T^{*} / T given by (18) with respect to different values of β having considered some particular values of non-dimensional foundation modulus $\lambda\left(=\frac{K a^{4}}{D}\right)$ and $\mu\left(=\frac{G a^{2}}{D}\right)$.

Fig. 2-Variation of the ratio of T^{*} / T with respect to different values of β.
It is apparent that the results of Nash and Modeer 4 for large amplitude free vibrations of rectangular plates without any elastic foundation coincides with that of the same plate with $b / a=1$ for $\lambda=5, \mu=1$. These results are also plotted by way of comparison.

REFERENCES

1. Berger, H.M. Jour. $A p p$, Mech., 22 (1955), 465-472.
2. IwiNsEI, T \& Nownsski, J., Arch., Mech., Stos,, 9 (1957), 593-603.
3. Nowirski, J., MRC. Tech. Summary Report No. 34 (Mathematics Research Centre, U.S. Army, The University of Wisconsin), 1958, p. 17.
4. Nash, W.A. \& Modemr, J.R., Engg. Progress Technical Paper No. 193, XIV, No. 10 (University of Florida), 1960,
©. Banmernin, B., Jour. Sci. Engg. Res., 12 (1) (1967).
5. Baneajen, B., Jour. Phy. Soc. Japan, 28 (1967), 1169-1172.
6. Banerimi, M.M., Ind. Joum, Meeh, Math., XII (1\&2) (1074), 20-25.
7. KERR, A.D., J. Appl. Meeh. Trans, ASME Series E., (1964).
8. Wana, Chi. Teh, 'Applied Elasticity', (MeGraw Hill, Now Yopk), 1963.
9. SEN, B., Bull. Cal. Math. Soc., 60 (1968), 25.
