)

ON RADIATIVE BOUNDARY SHOCK WAVES
B. Prasap

D.A.V. Post Graduate College, Azamgarh
&

R.P.Rar

M.M.T.D. College, Ballia

(Received 17 July 1976)
&
In this paper, we have postulated in a radiative gas, the occurrence of a boundary shock wave, considered as a
quick transition region in which, the viscous effects are compressible and are confined to a thin layer adjacent to a
surface. The generalised Rankine Hugoniot jump relations, Prandtl relation and the other properties of a shock
‘wave are derived and a discussion about the existenge of a boundary shock wave is made.

The possible occurrenge of & boundary shock wave as considered by Martin? is generalised to the case
of a radiative gas. Martin regarded a boundary shock wave as a thin region of viscous flow adjacent to
a surface from which gas flows at a very high rate with large heat transfer. When the application- of boun-
dary conditions is considered in the flow of an inviscid bulk of vapour (or injected gas) at high Reynolds
number the phenomena is possibly expected. Since the rapid decay of the viscous stress and heat con-
duction flux over a small distance would allow a rapid transition between an inviscid solution for the
flow out of the surface and surface conditions, for example, heat conduction, the boundary shock wave is
regarded as quick transition region belonging to the class of asymptotic phenomena discussed by Friedrichs2.
Tt is like a boundary layer in the sense that the viscous effects are confined to the thin layer adjacent to the
surface and is like a viscious shock wave in the sense that the flow is normal to the layer and the viscous
effects are compressive. The occurrence of a boundary shock wave is also possible when a gas flows out of a
porous wall if radiation is absorbed at the surface and is conducted back into the wall. Since extremely
high temperature gasesareinvolved in the phenomena, we have considered in this paper the boundary
shock wave in a radiating gas. We have assumed the existence of a boundary shock wave and have derived
across it the jumpsin the flow variables. Prandtl relation and other properties pertaining to the present

case are also obtained. . \ o

BLANE LAMINAR BOUNDARY SHOCK WAVE IN A RADIATIVE GAS WITH Pr=1

We assume the flow to be closed enough to mechanical equilibrium. The geometrical structure of
the surface is taken to be of such small detail that the velocity vector can be considered to be essentially
one dimensional so that the flow equations in one dimensional steady flow in a non-accelerating co-ordinate

system are
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where 2 denotes the distance on the positive side of z-axis, f is the sum of the surface forces given by
f=—p= St W
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o - ‘-being the radiation pressﬁ_re, e the internal energy per unit mass, » the viscous stress, ¢ the sum of
the con duction and radiation flux % and' ¢y B the lpngitudinal Prandtl number, o the coefficient of m
heat radiation and other symbols have their usual meaning. The specific enthalpy 2 with radiation effect

is given by

4 et . p ' :
h=eL — ~— ' ‘ :
_ Tyt L o
4 .
where ol is the radiation energy per unit mass. The equation of state for a thermally and

calorically perfect gas is

p = pRT (6)

and the conduction aﬁd. the radiation heat flux in the z-direction are given by
‘ ar R \ N
g = — ke —— , IR . (7
and v
‘ - dT \
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where k is the coefficient of thermal conductivity and %, is the effective coefficient of heat (lzonductivity'
hy radiation. ; : ' o -
The boundary conditions to be used along with equations (1), (2) and (3) are at 2 = x5 =0+

u=Ub, T=T6, Qc=§lob: q}=4rb ) (9)
and as Z - 00" ‘ : \
du aT - -
s, S0 , , (10)

where @ quantity with suffix b indicates its value at the boundary in the gas (x =0%) and with the
suffix ¢ its valuein the gas outside the boundary shock (z - ). We now define the conduction heat
transfer coefficient and the radiation heat transfer coefficients as ‘

v, e = qck . — 7 : ‘

= Haw T Wew o
= —® o, s

B = nw F%= e (12)

CONDITIONR ACROSS A BOUNDARY SHOCK

Tntegrating equations (1), (2) and (3) and applying the boundary conditions (9) and ( 10), we have

PoUp = petls - - ‘ / ’ (13)
‘ a T . all ~
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where Q = ¢re — @b i the net transport of radiation energy from the shook front. It has been shown?
' ~)

that at every point in the boundary shock ¢, = ur, (77 = 1). On account of the assumption, pr =1, ¢,
and v are eliminated from the equation (15). In addition, we have assumed here that the radiation

flux is independep.t of 7. .
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Asa consequenm of equa.tlons (13) and (14), we obta.m a rela.tlon a.na,logous to Rankme-Hugomot
relation in the form

/
{

pb ‘ p ‘ b a T‘, Tb4
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Multiplying equation (16) by (ue -+ uy) and making use of (15), we obtain a relation analogous to the
“Hugoniot relation’ as -

‘ 1 1 5 ( | Pb) a( ‘1 1y

— A —— — 1 1. — 4 4 il ) =
.(p’ p")(p« ! Pb)+ pw 0T e )P L Tb)(Pe+Pb)
2y (-Pe _ pb)+ 8a (T.‘ _/T,,") - 2Q
T r—1 \p Pb 3 pe b pb Uy

This relation can be rearranged to obtain a form which, according to Liepmann. and Roshkot is
analogous to the Rankine- Hugomot relation

(16)

i
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Prandtl Relation o
Denoting the sound speed and radiation sound speed respectively by \
P N
and ’
.0' _ ~al®
3p ?
we can write the equations (16) and (15) as |
| _ .0‘2 ’ Cb2 ’ T . Gn i . O'bz {
Uup ug = S T -+ 75 Up + e T om _ ‘k (19)
and )
wp? Cy? 4 Cp? qrb ug’ Cé 4 0
5~ + y—1 + 7 -+ P + 7—1 + " + |
_i’.‘__ _1- 7+1 L. — ’ i . \ . ’
+ Pe Ue 2 y—1 oM=D . - (20)
respectively, where .
8(y—1 . 2(y—1
(y—1) u® 4 2052 + (_y_) 0,527+A——(7——2— rb _
O*8 = ¥ Pb Up (@1)
y+1
From equation (20), we get P 4
(y—1) 4(y—1) (y=—1)gs
Ci = (¥ —1 D—--—-—— us.—- 0'.2 .
5 = ( ) g W v 5 o (22)
and '
—1 Lly—1) ., —1)q,
Ci=(p—1) D= 2D 2 A=) o (r—Dge (23)
- 2 Y , Pe Ue
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~ Subsfituting equations (22) and (23) in (19), we get

u,,_.u,=.o*z,(__1_,_;1_)+,.2r ( ™ ),_, (67~8)‘(%£__Q¢2_)_ .
. . | e
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* which can be further simplified to give

. 2y )-

e = O*2 - ey 2) -
' | + ‘y~l-1) (pe — po) - <y : Y 3 0 p G 7 I
~ = b ( e Up )} N ‘, ' R (25)

This gives the geaera.lls°d Prandtl relasion for the present case. It can be easily seen that for a simple
normal shock wave in a non-radiating gas, the equation (25 reduces to the well-known Pra.nd,tl relation,

=0 R (26)

which determines that the flow through a norma,l shock wave must go from either supersonic to subsonic
or vice-versa. For a boundary shock wave in a radiative gas, however, with 75 # 0, Cre, Crs # 0, Gre, v ;& 0
such a relation ¢an not be 1mposed and both u and u, may be subsonm By equating the twa* expressmns

for (Qf) obtained from the equatlons (20) and (25), we get on rearrangement

e
. ‘A1Z2s--‘A2Z+A3=O (27)
where
7 = P
Pe ‘
1 L (By—8) ]
4 1 L4 Rijprmim —m e
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4= Tt ey 7 B
and S ‘
M=
s b Ob
My= 0 - o (28)

For given values of y, Mz,, My, By a,nd Che, the ratio fo (—- Z) can be obtamed “In a similar

manner the pressure ratio and the tempera,ture ratlo may be obtalned as

L-l M( Lo o m) oo, oy
2 (1 20”” vm) £ (T" T) )
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The Mach number Me downstream of the‘bouhdary shock can be found by Writing;the*’equation (14)
in the form o , ' ‘ _

S 1 1 a : —1
yMa = [P [14 2 _ L (T4A_T4)}ﬁ1 ] . -
/ = |1k S b Ot (10— T4) | (31)
Me? can also be written as ' ‘ | '
Ue? YRTy '
2 2
. - M= SgE, T
into which the equations (13) and (31) may be substituted to give
- . . S
\ ( ) ) Mg
Me2= )} : - ? Pe 92 + ’.\ . N i
1—}—47_1. sz\,[l__(_f’i ,]+;4_(119(g,b2_0w2)+
> 2 : Pe 1 Y C? :
y—1 [ qs G ) . ' 39
~ T Ci? ( PoUe PeUe ) (82)

. , . . ™
The entropy production A;gmust be positive in order to ensure the physical conditions required by

the equations derived so far and hence the conservation equations have to be supplemented by the second
law of thermodynamics which can be written as ‘ ‘

e AS A S T I 38)
‘AzS—'AS AeS = S 8 P ppup Ty = . ()

where A, is the change in entropy due to heat transfer and § is the specific entropy. Equation (33)
can also be written as . :

CAs L Be— | 1 o
- beRSb +%?’Mb20;w+ 5 v Me* Bpo > 0 (84

»

For a perfect gas, the entropy is given by

17 (-8) - (52
R ( =5 ) = log [ o5\ pe - )
where we have taken S as the reference value and S, as the value of interest and p* is the sum gf gas pres-
sure and radiation pressure. Then the equations (33), (34) and (35) give us the required conditions as

y—1 o _pe* e Vo Y 1y Mgy, \
% Azs—‘log[pb*‘( Pe)]+ RRAY ,) 8 Une +

1 ‘ : TR
+ 5 rly—=HMP B >0 ~(36)

In order tha,ﬁ the Mach number Me, the density tatio, pressure and tempera,.tl}re ratios across g.boun-
dary shock wave be physically possible, the equation (27) must have a real positive root, the condition for -
which is : - » ,

2 2
. :
2+ vuE T vy

+ Ohc > 0 ‘ (37)"

.
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It is obvious that for positive value of O;,vt}iis condition is alwa}?s satisfied, For negative value of Cp,,
however, we must have ; ‘ ‘
. 2 / 2 - , ’
2 - >0 . 38
+ y My? + yMa? e , (38)

Since boundary shock wave is a ga.s-dyné.mic discontinuity, its existence depends on the stability
of the phenomena c.f. Hayes®. For positive Cj, the heat is ‘conducted back through the out-flowing
fluid, in the same direction as the heat conduction occurs in the physical situation existing in a simple shock

wave. As such- the cases with positive Cj, only are significant since they correspond to simple shock -
- wave solutions known to exist in reality and be stable. : '

The physical existence of a boundary shock seems doubtful for negative values of Cj, even in those
cases where Cj, satisfies the equation (37). The structure of a boundary shock wave in a radiative gas is
also being studied and will be communicated shortly. S ‘ '

"
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