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In tbis paper, we have postulated in a radiative gas, the occurrence of a boundary shock wave, considered as a 
quick transition region in which the viscous effects are compressible and are confined to a thin layer adjacent to a 
surface. The generalised Rankine Hugoniot jump r lations, Prandtl relation and the other properties of a shock 
rave are derived and a discussion about the exist$e of a boundary shock wave is mads. 

The possible occurrence of? boundary shock wave as considered by Martin1 is generalised to the case 
of a radiative gas. Martin regarded a boundary shock wave as a thin region of viscous flow adjacent to 
a surface from which gas flows at  ft very high rate with large heat transfer. When the application of boun- 
dary conditions is considered in the flow of an inviscid bulk of vapour (or injected gas) a t  high Reynolds 
number the phenomena is possibly expected. Since the rapid decay of the viscous stress and heat con- 
duction flux over a small distance would allow a rapid transition between an inviscid solution for the 
flow out of the surface and surface conditions, for example, heat conduction, the boundary shock wave is 
regarded as quick transition region belonging to the class of asymptotic phenomena discussed by Friedrichsa. 
I t  is like a boun.dary layer in the sense that the viscous effects are confined to the thin layar adjacent to the 
surface and is like a viscious shock wave in the sense that the flow is normal to the layer and the viscous 
effects are compressive. The occurrence of a boundary shock wave is also possible when a gas flows out of a 
porous wall if radiation is absorbed at  the surface and is conducted back into the wall. Shoe extremely 
high temperature gases are involved in the phenomena, we have considered in this paper the boundary 
shock wave in a, radiating gas. We have assumed the existence of a boundary shock wave and have derived 
aoross it the jumps in the flow variables. Prandtl relation and other properties pertaining to the present 
case are also obtained. 

We assume the flow to be closed enough to mechanical equilibrium. The geometrical structure of 
the surface is taken to be of such small detail that the velocity vector can be considered to be essentially 
one dimensional so that the flow equations in one dimensional steady flow in a non-accelerating co-ordinate 
system are 

where z denotes the distance on the positive side of x-axis, f is the sum of the surfwe f~rces  given by 
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a T4 - being the radiation pressure, e the internal energy per unit mass, T the viscous stress, q the sum of 
3 

the conduction and radiation flux q, and p, ;bYr the longitudinal Prandtl number, a the coefficient of 
heat radiation and other symbols have their usual meaning. The specific enthalpy h with radiation effect 
is given by 

4 aT4 P 
h = e +  - 

P +T (5) 

aT4 
where - is the radiation energy per unit mass. The equation of state for a thermally and 

P 

oalorically perfect gas is 

$3 = pIb% (6) , 

and the condudion and the radiation heat flux in the X-direction are given by 

and 

where k is the coefiojent of thermal conductivity and k, is the effective coeefaient of heat condyctivity 
hy radiation. 

The boundary conditions to be used along with equations (I), (2) and (3) are at  x = xb = 0+ 

4.4 = zca T = Tb , qo =qcb qv = Qrb (9) 

where a quantity with s u f k  b indicates ;ts value at  the boundary in the gas (x = 0+) and with the 
suffix its value in the gas outside the boundary shock (s-t a). We now define the conduction heat 
thransfer ooef&oient and the radiation heat transfer coeficients as 

, 
C O N D L T I O N P  A C R O S S  A B O U N D A R Y  S H O C K  

I 

Integrating equations (I), (2) and (3) and applying the boundary conditions (9) and (lo), we have 
Pbub = Peue (I31 

a Tb4 a T> 
pb ub2 + $% + 7 - Tb = Pa 3 + $h + 7 (14 

1 $3b 4a Tb4 Y %  4a T$ 1 Y - U t + +  - 4  - Q 
-- 3 + ,1 pb y-l Pe 3 pe f,, (16) 
2 

whare Q = qre - q~ is the net transport of radiation energy from the shook front. It has been shown' 
that st every pomt m the boundary shock qc = UT, (FT = 1). On account of the assumption, Fr = 1, qc 

,, are eliminated from the equation (15). In addition, we Save assumed here that the radiation 
flux is independent of 7.  
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A s s  clonsequence of equations (13) and (14),  we obtain a relation analogous to  ank kine-~u~o~iot 
relation in the form I 

Multiplying equation (16) by (zt, f ub) and making use of @6),  we obtain a relation analogous to the 
'Hugoniot relation' as 

This relation can be rearranged to obtain s form which, according to Liepmann and Roshko4is 
analogous to the Rankine-Hugoniot relation 

I 

Denoting the sound speed and radiation sound speed respectively by \ 

and 

we c m  write the equations (16) and (15) as 
4 

C,a 
ub - -'uU = - Cb2 -- 7 b  eve= Ch2 +zz + - - -  

Yub Yub % ?‘% (19) 

and 

respectively, where 

(Y - 1 )  ub2 f 2Cbz f 8(Y - 1 )  

C*B = Y 
r + l  (21) 

From equation (20), we get , 

( 7 - 1 )  ua' - O*Z = ( Y - 1 )  Dm- ((? - 1 )  Orb%- ( Y - 1 )  qtb 

2/ , Y . Pb Ub 

ahd 



Substituting equations (22) and (23) in (19) ,  we get 

which can be further qimplified to give which can be further qimplified to give 

2 
Ub u, = C" -I- ( 3 y - 4 )  Y ( p e ~ $ - p b ~ r b 2 )  - 

(26) 

This givdr the generalisd Prandtl rela\iod for the present case. It can be easily seen that for a simple 
normal shoOk wave in a non-radiating gas, the equation (25) reduces to the well-known Prandtl relation 

which determines that the flow through a normal shock wave must go from either supersonic to subsonic 
or vice-versa. For a boundary shock wave in a radiative gas, however, with rb # 9, Cre, & P 0, qr6, qrb 0 

a relation can not be imposed and both us and u, may be subsonic. By equating the twd- expressions 

obtai~ed from the equations (20) and (25), we get on rearrangement 

1 1 
f ~ h c  +- ] I 

1 
f- 4(Y -- 1 )  + -- - 

Y Mb2 Ya Mh2 2y 
I 

and 

- ub &= - 
/ c b  

U b  M&= - , (28) 
Qrb 

Pb por given values of y, Mb, M&, Rnc and Cb, the ratio -- C = 2) tin be obtained. I n  a similar 
Pe 

mamer the pressure ratio and the temperadxire ratio may be obtained as 

1 . I ~ ~ = I + Y M & ~  I +  T c h c - -  
Pe 

(29) 
pb 
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The Mach number Me downstream of the boundary shock can be found by writing the equation (14) 
in the form 

Me2 can also be written as 

into which the equations (13) and (31) may be substituted to give 

I 

Me2 = 

- 
Y - 1 ( ¶re ) . . +-@- pb ue pe ue 

' (32) 
\ 

The entropy production nia must be positive in order t o  ensure the physical conditions required by 
the equations derived so far and hence the conservation equations have to b e  supplemented by the second 
law of thermodynamics which can be written as 

where Ad is the change in entropy due to heat transfer and -S is the specific entropy. Equation (33) 
can also be written as 

A i s - S e - s ,  1 
7- 

1 
R R 

+ y Y M b 2 C C +  - y M b 2 R b  2 Z 0 (34) 
J 

For a perfect gas, the entropy is given by 

where we have taken Sb as the reference value and Se as the value of interest and p* is the sum of gas pres- 
sure and rdiation pressure. Then the equations (33), (34) and (35) give us the required conditions as 

1 + Y ( Y -  1)Mb2Rhc 2 0 (36) 

In order that the P w h  number Me, the density + ~ t i o ,  pressure and temperature ratios across a boun- 
dary shock wave be physioally possible, the equation (27) must have a real positive root, the condition for 
which is 



1 
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I t  is obvious that for positive value of Cb this condition is always satisfied, For negative value of Oh, 
however, we must have 

Since boundary shock wave is a gas-dynamic discontinuity, its existence depends on the stability 
of the phenomena c.f. Mayess. For positive CA, the heat is conducted back through the out-flowing 
fluid, in the m e  direction as the heat conduction occurs in the physical situation existing in a simple shock 
wave. As such- the cases with positive Cir, only are significant since they correspond to simple shook 
wave aolutions known to exist in reality and be stable. 

The physical eiistence of a boundary shock seems doubtful fa%. negative values of Ch0 even in those 
cases where 4, satisfies the equation (37). The strmture of a boundary shock wave in a radiative gas is 
also being studied and will be commuaicated shortly. 
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