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The effect of uniform transverse 'magnetic field is investigated a n  the flow formed, when a straight channel 
formed by two parallel porous walls through which liquidis flowing ufider a cons ta~~t  pressure gradient, is rotated 
about an axis perpendicular to the walls. The flow depend@onAhe Taylor's number ti, Pre~eure gsadient P, t b  
suction Reynolds number /3 and the Hartmann qumber M. When @+a ~ u c h  that P is fi&e, thin boupdary 
layersaseformedin the vioinityof theporous walls and the effeot of the magnetic field is to  reduce the thickness 
of the bouqdary layers. A method for setting up an experime-t tq t ss t  the theoretical conclusions of the paper 
has been suggested. 

The fundamental difficulty in solving the Navier-Stolies e'quations either exactly or approximately 
is the non-linearity introduced by the conveotion terms in the .momentum equations. There exist, 
however, non-trivial problems in which the convection terms \ankh an.d these provide the simple class 
of solutions of the equations of motion.. One such flow has be3n considered recently by Vidyanidhi an.d 
Nigaml who have studied the secoudary flow when aatraight channel formed by two parallel walls, 
through which liquid is flowing unaer B c0nstan.t-pressure g~adient is rotated about an axiis perpendi- 
cular to the walls. This problem was later extended by V?dyanidhia in the frame-work of hydromagne- 
tics. . . 

Becjently, the of fluid flow through porous ducts has because of its application to the 
oases of transpiration cooling, gaseons diffusion, etc., become a subject of study by numerous authors. 
The ,effect of suction in rectangular channels was studied by Berman8 and later extended by Surya 
Prakasa Bao4, Terrill and Shrestha5 etc., in the frame-work of hydrom?gnetics, neglecting theinduced 
magnetic field. Similar work due to Reddy and Jaine, Vidyanidhi and Raman.a Rao' has al& been four-d 
in literature. The effects of uniform suctien foa t h ~  Karman problem of flow and other flows in 
rotating frame of reference have ljeen discussed by numerous authors 8tuarL8, GuptaQ, Debnath and 
&$ukherjeelo, and Singh and Sathill. Recently Vidyanidhi, Bala Prasad and Ramana Raola have studied 
theeffects of uniform suction and injection on the flow i~vestigated by Vidyanidhi and Nigaml. In. all 
these problems dealing with suction and injection, it is seen that, even if the convection terms in the 
momentum equation do not vanish, gat they did not introduce serious complications as they are linear 

, -  . 
in the unknown variables. . 

The object of the *resent is as such to extend our earlier problemla in the frame-work of hydro- 
magnetics, neglecting the induced magnetic field, following the works of several authors4-7. It is 
of interest to examine the nature of the secondary flow which is set updue to the interaction between 
the pressure gradient and Coriolis forces. Further it affords a simple picture of the way in which 
thg thickness of tEe boundary layers that arise in a rapidly rotating system is reduced as an effeot of the 
laagnetio field. 

T H E  B A S I C  E Q U A T I O N S  A N D  S O L U T I O N 8  

The basic equations which express the interactions between the fluid motiona and the magnetic 
fields are Ma~well's equations and the Navier-Stokes equations. The steady motion of an incompressible 
conducting fluid in the presence of a magnetic field in a rotating frame of reference 0' X' Y' 2' is govern- 
ed by the following eguations (in rationalized MKS system of units). 

Maxwell's equations : 

where 
i 



Ohm's law for moving media can be written as 

The equation of continuity is 

dions are The momentum equat ' 

-a' +2  Y 3' -9' 
Heren' = p' - 3 p 1 ba x r I and U, 8 and r are the velocity, angular vclocity &d position vector 

respectively. Also the oi her aymbols used here have their usual meanings. p, is the mgnetic 
permeability, o the electrical conductivity and v the kinematic viscosiBy of the fluid. 

We choose a right handed Cartesian system suoh that 2'-axis is perpendicular io the motion of the 
liquid under the action of a constant pressure grrtdient P (i.e., - a d/.; x i )  ir. the diWec ion of n;'-axis 
between two parallel porous wdll3 z' =. f L (Stationary rela'ive to 0' X' Y' 2'). 

Assuming that 7t' isindependent of y' and zt, ?t' is given by 

whwe pt1 and p i  stand for the preswres on the planes x' = 0 and x' = D respectively. 
- - 

We suppose that 1 he normal velocity at the wall a' = - L is cttp ( do > 0 ) so that this represents 
a porous wall18 through which, liquia is forced into the channel with a uniform velocity. It is further 
aasumed,that this rate of injeotion a t  th.e lower wall is equal to the suction rate at  the-ut>per wall, The 
liquid velocity is then represented by 

Let 3, be the intensi ty of the ixitagneLir: field acting perpendicular to the plates. We shall assume that 
+ + 

the contribution to the ponderomoLive force vector J X B of the xt-component as - - well iis y'-oom- 
-" . 

ponent of the vector B IS negligible. Furthervre we a-me that the e1eo:ric field in a sptem of referenoe 
fixed relaiive to the moving body is zero; this seems ta be -a reasonable assumpLion siq? no e;piternal 
eleoLrio field is applied and the effec' of polarization of the conducting fluid may be expected to be small 
if two-dimensionel conditions o5cw in the ionized layerl4. With these assumptions the "retarding" 
magnetic forces acting on each flwd element per dnit volume in the x' and y' directions are equal to a % 
and Beo uk respectively. 

Introducing the non-dimensional g~a&ities 
4* 3 PLa PL2 PV va2 

. s t y  L, ( u ) ~  = - h, US = uy, u', = - , n t =  - 
2:- 'Lpv La ' 

the eq. (5) reduces to 
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We seek the solution of eqa. (10) a id (11) aubjeot to the boundary .oqiitions- = . 

u z = w ~ = O a t z = & l .  (1'2) 

The solution is given by 
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The drag Da in th_e-direction of x-axis per unit area on the boundaries z = ;t: 1 is found to be 
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For large @ such~hat  (PI$) remains finite and for a h e d  p,  we obtain from egs. b 3 )  and (14) for 
1 9 z > O  - - 

1 
U, $2 - ,(' + /312)(z - 1) sin 
- - - . (20) 
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where 

O2 - +a = W, 04 = a2 

Putting 8=3  in eqa:(20,21), we reoqver eqs. (3.1.1) of Vidyanidhi2. 8imilarly when Jf = 0 in eqs. (20 to 
23), we recover eqs. (2.17 to 2-20) of our earlier worklg. 

NUMERICAL C A L C U L A T I Q N S  A N D  D I S C U S S I O N  

Symmetry of the Flow 

If we replace the suction Reynolds number B by their negativevalues and z by -2, the expressions for 
both the primary and: secondary velocity distributions as given by eqs. (13) and (14) respectively do not 
change. This shows that when there is uniform injection at the lower wall, the primary and the secondary 
flow distributions in the lower half are the same as in the upper half for the case of uniform injeciion a t  
the upper wall and vice-versa. Hence in the numerical computations involved in this problem, we have 
considered the positive values of the suction Reynolds numbers. 

The normalized velocity distributions for the primary, secondary flows, when a=O ,841, 8 =1 and 
M=O, 2 have been shown in Figs. 1 and 2 to illustrate the effect of porosity. For constant suction Reynolds 
numbers, the velocity profiles tend to  the symmetrical position about the central line with increasing 
values of Hartmann number M, as in the case of HartmannF where the svction and injection are absent. 
But for constant Hartmann number, as we increase the value of 8 ,  this sort of behaviour is slender. 

Boundary Layers for Lwge  a and Finite M and 13 
We note from eq. (20) that the amplitude of u, is positive and that the function sin (4 (1 - 2)) can 

take positive or negative values. For a 4 a ,  such that (P/aa) is finite, the disturbance is confined to regions 
of order L/(19+/3/2) in the vicinity of the suction. wall and Ll(0-/3/2) in the vicinity of the injection wall, 
the thickness of the boundary layers being of order 

This shows that in the absence of the magnetic field, suction causes thinning of $he boundary layera, while 
injection causes a thickening of the boundary layerg'l6. The effect of the magnetic field on a rapidly rotat- 
ing system is to reduce the thickness of the boundary layer a t  both the"suction and injection walls and 

' 

more a t  the injeotion wall than that the suction wall. This is pronounced from the nature of graphs of 
Figs. 1 and 2 close to the vicinity of walls. ' 

I 

Bi& I-~orqdized velooity rofiles:of the primarylqo&, 

. t 

Fig. 2 -Nqa l i s4  veloaity profiler of the seoondarJ flow. 



The stream lines can be examined at this &age. In the non-magnetic3 case the stream lines are no 
longer conhed to pl+neer parallel to the wdls implying that a particle of liquid once in a plane leaves it in 
its subsequent motion. Due to uniform suction and injection, the effeot of the maghetic field is to retard 
and confine the stream lines to planes parallel to the walla implying that a particle of liquid once in a 
plane does not leave it in its subsequent motion. For small values of a, /3 and M the angle e, which the 
projection of the stream lines makes with the x-axis decreases from 

It  is found for fimd a and @, decreases as M increases. 

- 
Drag, Mass Plow Rate and the Resistance C2-$isient 

Fig. 3 shows the calculated values of the 6-g at either wrdl snct based on eq. (19). It is concluded 
that for fixed values of a and p, the effe"; of the magne;io field is 60 decrease the drag s t  both the walls 
while for fixed a and M, the drag at both the walls increases as /3 ir~oreasesl~. 

Fig. 3-Dr~g & tho walla Fig. 4-Mase flow rate along z-a&, 

For fixed value8 of a and 8, as M increases, we observed (i) from Fig. 4, the mass flow rate along the 
%-a& deoreases (ii) from the table given below the resistance coeflicient." (r,/r) or (Q/Q,;9 where 9 a44 
Q, denote the flux for flows without: and with rotation, decreases, 



Sujjestions for Experimental Verijccttiolz 

It may be possible to  perform experiments by rotating a channel of finite width R which is great com- 
pared with the dep h 2L. I n  such a channel the conditions dose to the walls zl=f A are not given by t lie 
above caloulations but if the side walls are in such a direction that there is no total flow across them, 
then the conditions can be attained approaiimately over most of the channel. It is necessary to keep the 
side walls a t  an angle '-A' with $'-axis where 

It is con:ludel from Fig. 5 that for fixed a and /I, this angle A decreases as M increaees. The 
effeot of the magnetic field is 'o inhibit the secondary flow through the side walls. 

Fig. 6-The angle A as o funotion of the psrameter M. 
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