A PROBLEM IN THE GENERALISED THEORY OF THERMO-ELASTICITY

D. Rama Murthy

Regional Engineering College, Warangal

(Received 6 October 1976; revised, 16 March 1977)
This paper deals with the dynamic treatment of a transient thermo-elastic half space that is exposed to step temperature and velocity on its entire plane boundary and is constrained against transverse displacements, using generalized theory of thermo-elasticity.

Aircraft structural designers usually deal with the thermal stress problems associated with elevated temperatures in arplane, missile structures, jet engines and nuclear reactors. The thermal-stress distribution pertaining to the problem. whose plane boundry is subjected to step and/or ramp type temperatures only, was treated by V. I. Danilovskaya, T. Mura ${ }^{2}$ and E. Sternburg \& J. G. Chakrabarthy ${ }^{3}$. Physically, when the boundary experiences temperature variation, it often also experienoes velocity variations. Y. T. Tsui4, showed that the thermal-stress distribution changes considerably once the velocity variation on the boundary is considered. He also determined thermal-stress distribution and displacement distribution when the half space is exposed to step temperature and velocity, using uncoupled theory,

The aim of this paper is to determine temperature distribution and the subsequent thermal-stress distribution when the half space is exposed to step-temperature and velocity, using the generalized theory of thermo-elasticity which takes into account the effect of relaxation time.

GOVERNINGEQUATIONS
The energy equation is

$$
\begin{equation*}
k T_{, i i}=\rho C_{E}\left(\dot{T}+\tau_{0} \ddot{T}\right)+(3 \lambda+2 \mu) \alpha T_{0}\left(\dot{\epsilon}_{K K}+\tau_{0} \ddot{\epsilon}_{K K}\right) \tag{1}
\end{equation*}
$$

The equation of motion is

$$
\begin{equation*}
\rho \ddot{u}_{i}=(\lambda+\mu) u_{j, i j}+\mu u_{i, j j}-(3 \lambda+2 \mu) \alpha T_{, i} \tag{2}
\end{equation*}
$$

The stress-strain, temperature relation is

$$
\begin{equation*}
\sigma_{i j}=\lambda \epsilon_{K K} \delta_{i j}+2 \mu \epsilon_{i j}-(3 \lambda+2 \mu) \alpha\left(T-T_{0}\right) \delta_{i j} \tag{3}
\end{equation*}
$$

Now using the following non-dimensional variables

$$
\begin{align*}
& Z=\left(\frac{\lambda+2 \mu}{\rho}\right)^{1 / 2} \frac{\rho C_{E}}{k} x, \tau=\left(\frac{\lambda+2 \mu}{\rho}\right) \frac{\rho C_{E} t}{k} \\
& \theta=\frac{T-T_{0}}{T_{0}}, \Sigma=\frac{\sigma}{(3 \lambda+2 \mu) \alpha T_{0}} \tag{4}\\
& U=\left[\rho\left(\frac{\lambda+2 \mu}{\rho}\right)^{3 / 2} \frac{1}{(3 \lambda+2 \mu) \alpha T_{0}} \frac{\rho C_{E}}{k}\right]
\end{align*}
$$

Equations (1), (2) and (3) become

$$
\begin{gather*}
\ddot{\theta}-\dot{\theta}-\beta \ddot{\theta}=e(\ddot{U}+\beta \ddot{U}) \tag{5}\\
U^{\prime \prime}-\ddot{U}=\dot{\theta} \tag{6}\\
\Sigma=U^{\prime}-\theta \tag{7}
\end{gather*}
$$

'"denotes differentiation with respect to Z and

[^0]where
λ, μ are Lami's constants,
$k=$ Thermal conductivity,
$\alpha=$ Coefficient of Linear expansion,
$\tau_{0}=$ Relaxation time,
$C_{E}=$ Specific heat at constant deformation,
and
\[

$$
\begin{equation*}
e=\text { Thermo-elastic coupling constant }=\frac{(3 \lambda+2 \mu)^{2} \alpha^{2} T_{0}}{(\lambda+2 \mu) \rho} \tag{8}
\end{equation*}
$$

\]

$$
\beta=\text { Relaxation Constant }=\frac{(\lambda+2 \mu)}{\rho}\left(\frac{\rho C_{E}}{k}\right)
$$

FORMULATION AND SOLUTIONOFTHEPROBLEM

Consider an elastic half-space whose boundary $x=0$ is subject to a step temperature and step velocity. The problem is to find the temperature distribation in the half space $x>0$ with constrained lateral displacements i.e. $v=w=0$.
i.e. to solve the equations

$$
\begin{aligned}
& \dot{\theta}-\dot{\theta}-\beta \ddot{\theta}=e(\ddot{U}+\beta \ddot{U}) \\
& U^{\prime}-\ddot{U}=\theta^{\prime} \\
& \Sigma=U^{\prime}-\theta
\end{aligned}
$$

subject to the following boundary conditions

$$
\left.\begin{array}{l}
\theta(z, \tau)=H(\tau), \text { when } Z=0, \tag{9}\\
\left.\frac{\partial U}{\partial \tau}\right|_{z=0}=H(\tau)
\end{array}\right\}
$$

where $H(\tau)$ is the heaviside step function.

$$
\begin{aligned}
H(\tau) & =0 \text { for } \tau<0 \\
& =1 \text { for } \tau>0
\end{aligned}
$$

We can neglest the strain accaleration term i e \ddot{U} in the energy equation, since the product e β is muoh less than either e or β in the intermediate range and room temperature ${ }^{5}$.

The problem to be solved is

$$
\begin{align*}
& \theta^{\prime \prime}-\dot{\theta}-\beta \ddot{\theta}=\theta \ddot{U}^{\prime} \\
& U^{\prime \prime}-\ddot{U}=\theta^{\prime} \tag{10}\\
& \Sigma=U^{\prime}-\theta
\end{align*}
$$

subject to the boundary conditions (9).
The initial conditions are taken as

$$
\begin{equation*}
\theta(Z, 0)=0, \quad U(Z, 0)=U^{\prime}(Z, 0)=0 \tag{11}
\end{equation*}
$$

From (10), we canget after eliminating U

$$
\begin{equation*}
\theta^{\prime \prime \prime}-(1+\beta) \ddot{\theta}-(1+e) \ddot{\theta}+\ddot{\theta_{\perp}}+\beta \ddot{\theta}=0 \tag{12}
\end{equation*}
$$

Similary by eliminating θ, we get

$$
\begin{equation*}
\ddot{U}-(1+\beta) \ddot{U}-(1+e) \ddot{U}+\ddot{\beta} \ddot{U}+\ddot{U}=0 \tag{13}
\end{equation*}
$$

Now applying Laplace transform with respect to τ, we get

$$
\begin{equation*}
\ddot{\bar{U}}-p[p(1+\beta)+(1, e)] \bar{U}^{\prime \prime}+p^{2}\left(p+\beta p^{2}\right) \bar{U}=0 \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{U}(Z, p)=\int_{0}^{\infty} \operatorname{Exp}\left(-\mathrm{p}_{\tau}\right) U(Z, \tau) d \tau \tag{15}
\end{equation*}
$$

and p is the transform parameter.
The transformed boundary conditions will take the form

$$
\begin{equation*}
\bar{\theta}(Z, p)=\frac{1}{p}, \quad \frac{\overline{\partial \bar{U}(Z, \tau)}}{\subset \tau}=p \bar{U}=\frac{1}{p} \tag{16}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{\theta}^{\prime \prime \prime \prime}-p[p(1+\beta)+(1+e)] \bar{\theta}^{\prime \prime}+p^{2}\left(p+\beta p^{2}\right) \theta=0 \tag{17}
\end{equation*}
$$

Now using the regularity boundary conditions, i.e.

$$
\operatorname{Lt}_{Z \rightarrow \infty} \bar{\theta}(Z, p)=\operatorname{Lt}_{Z \rightarrow \infty} \bar{U}(Z, p) \longrightarrow \text { finite value. }
$$

We get

$$
\begin{equation*}
\bar{\theta}(Z, p)=A \operatorname{Exp}\left(-\alpha_{1} Z\right)+B \operatorname{Exp}\left(-\alpha_{2} Z\right) \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\bar{U}(Z, p)=C \operatorname{Exp}\left(-\alpha_{1} Z\right)+D \operatorname{Exp}\left(-\alpha_{2} Z\right) \tag{19}
\end{equation*}
$$

where
$\alpha_{1,2}=(p / 2)^{1 / 2}\left[p(1+\beta)+1+e \pm\left[[p(1+\beta)+(1+e)]^{2}-4\left(p+\beta p^{2}\right)\right]^{1 / 2}\right]^{1 / 2}$
A, B, C, D are constants.
Now taking the series expansion for large values of p (i.e. for small values of time) and neglecting the negative powers ${ }^{6}$ of p, we get

$$
\begin{align*}
& \alpha_{1}=p+e / 2 \tag{21}\\
& \alpha_{2}=\sqrt{\beta} p+1 / 2 \sqrt{ } \bar{\beta} \tag{22}
\end{align*}
$$

Using the boundary conditions (16) and with the two equations obtained by substituting (18) and (19) in the first and second equations of (10) the constants A, B, C, D, are found to be

$$
\begin{align*}
& A=-\frac{e \sqrt{\beta} x^{2}+\left[\frac{1}{4 \beta}-\frac{1}{4}-\frac{e}{\sqrt{\beta}}\right] p+\left[\frac{1}{4 \beta}(e-1)+e(1-2 \sqrt{\beta})\right]}{p\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)} \tag{23}\\
& B=\frac{1}{p}-A \tag{24}
\end{align*}
$$

$C=\frac{\left[1+\beta(\sqrt{\bar{\beta}-2)}] p^{2}+[2(\beta-1)+e+3 \sqrt{\beta} / 2-1 / 2 \sqrt{\beta}] p+\left[\frac{3}{2}-2 e+\frac{1}{2 \sqrt{\beta}}-\frac{1}{4 \beta}\right]\right.}{p\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)}$
and

$$
\begin{equation*}
D=\frac{1}{p^{2}}-C \tag{26}
\end{equation*}
$$

where

$$
\begin{gather*}
(1-2 \beta) p^{3}+[2(\beta-1+e \sqrt{\beta})+e] p^{2}+[3 / 2-3 e-1 / 2 \beta+e / \sqrt{\beta}] p+ \\
+[(1 / 2 \beta)(1-3 e / 2)]=\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right) \tag{27}
\end{gather*}
$$

$\therefore \bar{\theta}(Z, p)=\operatorname{Exp}(-Z / 2 \sqrt{\beta}) \frac{\operatorname{Exp}(-\sqrt{\beta} Z p)}{p}+\operatorname{Exp}\left(-Z / 2 \sqrt{\bar{\beta})} \frac{\operatorname{Exp}(-\sqrt{\beta} Z p)}{p} \times\right.$

$$
\times\left[\frac{\left.e \sqrt{\beta} p^{2}+[1) 4 \beta-1 / 4-e / 2 \sqrt{\beta}\right] p+[(1 / 4 \beta)(e-1)+e(1-2 \sqrt{\beta})]}{\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)}\right]-
$$

$$
\begin{equation*}
-\operatorname{Exp}(-, Z / 2) \frac{\operatorname{Exp}(-p Z)}{p}\left[\frac{\sqrt{\beta} p^{2}+\left[\frac{1}{4 \beta}-\frac{1}{4}-\frac{e}{2 \sqrt{\beta}}\right] p+\left[\frac{1}{4 \beta}(e-1)+e(1-2 \sqrt{\beta})\right]}{\left(p-\mathrm{A}_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)}\right] \tag{28}
\end{equation*}
$$

Taking the inverse transform ${ }^{7}$, we get

$$
\begin{aligned}
\theta(Z, \tau)= & 0, \\
= & \operatorname{Exp}(-Z / 2 \sqrt{\beta})\left[1+F\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+F\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+\right. \\
& \left.+F\left(A_{8}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right] \\
= & {[\operatorname{Exp}(-Z / 2 \sqrt{\beta})-\operatorname{Exp}(-e Z / 2)]\left[F\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+\right.} \\
& \left.+F\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+F\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right] \quad \text { when } \sqrt{\beta} Z<\tau<Z \\
& +\operatorname{Exp}(-Z / 2 \sqrt{\beta})
\end{aligned}
$$

where

$$
\left.\begin{array}{l}
F\left(A_{1}\right)=M\left(A_{1}\right) / A_{1}\left(A_{1}-A_{2}\right)\left(A_{1}-A_{3}\right) \tag{30}\\
F\left(A_{2}\right)=M\left(A_{2}\right) / A_{2}\left(A_{2}-A_{1}\right)\left(A_{2}-A_{3}\right) \\
F\left(A_{3}\right)=M\left(A_{2}\right) / A_{3}\left(A_{3}-A_{1}\right)\left(A_{3}-A_{2}\right)
\end{array}\right\}
$$

and

$$
\begin{gather*}
M\left(A_{i}\right)=e \sqrt{ } \beta_{A_{i}}+[1 / 4 \beta-1 / 4-e / 2 \sqrt{ } \beta] A_{i}+[(1 / 4 \beta)(e-1)+e(1-2 \sqrt{\beta})] \\
\vec{U}(Z, p)=\operatorname{Exp}(-Z / 2 \sqrt{\beta}) \frac{\operatorname{Exp}(-\sqrt{\beta} p Z)}{p_{2}}+ \tag{31}
\end{gather*}
$$

$$
+\left[\frac{[1+\beta(\sqrt{\beta}-2)] p^{2}+[2(\beta-1)+\theta+3 \sqrt{\beta} / 2-1 / 2 \sqrt{\beta}] p+[3 / 2-2 \theta+1 / 2 \sqrt{\beta}-1 / 4 \beta]}{\left(p-A_{1}\right)\left(p-A_{2}\right)\left(p-A_{3}\right)}\right]
$$

$$
\begin{equation*}
\times\left[\operatorname{Exp}\left(-e Z / 2 \frac{\operatorname{Exp}(-p Z)}{p}-\operatorname{Exp}(-Z / 2 \sqrt{\bar{\beta}}) \frac{\operatorname{Exp}(-\sqrt{\bar{\beta}} p Z)}{p}\right]\right. \tag{32}
\end{equation*}
$$

Taking the inverse transform ${ }^{7}$, we get

$$
\begin{align*}
& U(Z, \tau)= 0 \\
&= \operatorname{Exp}(-Z / 2 \sqrt{\beta})\left[\tau-\left[G\left(\mathrm{~A}_{1}\right)\left[\operatorname{Exp}\left(\mathrm{A}_{1} \tau\right)-1\right]+G\left(\mathrm{~A}_{2}\right)\left[\operatorname{Exp}\left(\mathrm{A}_{2} \tau\right)-1\right]+\right.\right. \\
&\left.+G\left(\mathrm{~A}_{3}\right)\left[\operatorname{Exp}\left(\mathrm{A}_{3} \tau\right)-1\right]\right] \text { when } 0<\tau<\sqrt{\beta} Z \\
&= {[\operatorname{Exp}(-e Z / 2)-\operatorname{Exp}(-Z / 2 \sqrt{\beta})]\left[G\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+\right.} \\
&\left.+G\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+G\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right]+\tau \operatorname{Exp}(-Z / 2 \sqrt{\beta}) \\
& \text { when } \sqrt{\beta} Z<\tau<Z \tag{33}
\end{align*}
$$

where

$$
\left.\begin{array}{l}
G\left(A_{1}\right)=N\left(A_{1}\right) / A_{1}\left(A_{1}-A_{2}\right)\left(A_{1}-A_{3}\right) \tag{34}\\
G\left(A_{2}\right)=N\left(A_{2}\right) / A_{2}\left(A_{2}-A_{1}\right)\left(A_{2}-A_{3}\right) \\
G\left(A_{3}\right)=N\left(A_{3}\right) / A_{3}\left(A_{3}-A_{1}\right)\left(A_{3}-A_{2}\right)
\end{array}\right\}
$$

and

$$
\begin{gather*}
N\left(A_{i}\right)=[1+\beta(\sqrt{\beta}-2)] A_{i}^{2}+[2(\beta-1)+e+3 \sqrt{\beta} / 2-1 / 2 \sqrt{\beta}] A_{i}+ \\
+[3 / 2-2 e+1 / 2 \sqrt{\beta}-1 / 4 \beta] \text { for } i=1,2,3 \tag{35}
\end{gather*}
$$

The stress distribution is

$$
\begin{align*}
\Sigma= & U^{\prime}-\theta \\
\therefore \Sigma=0 & -(1 / 2 \sqrt{\beta}) \operatorname{Exp}(-Z / 2 \sqrt{\beta})\left[\tau-\left[G\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+\right.\right. \\
& \left.\left.+G\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+G\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right]\right] \text { when } 0<\tau<\sqrt{\beta} Z \\
& -\operatorname{Exp}(-Z / 2 \sqrt{\beta})\left[F\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+F\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+\right. \\
& \left.+F\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right] \\
= & (1+\tau / 2 \sqrt{\beta}) \operatorname{Exp}(-Z / 2 \sqrt{\beta})+[(1 / 2 \sqrt{\beta}) \operatorname{Exp}(-Z / 2 \sqrt{\beta})-(e / 2) \operatorname{Exp}(-e Z / 2)] \\
& {\left[G\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+G\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+G\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right]+\quad \text { when } \sqrt{\beta} Z<\tau<Z } \\
& +[\operatorname{Exp}(e Z / 2)-\operatorname{Exp}(-Z / 2 \sqrt{\beta})]\left[F\left(A_{1}\right)\left[\operatorname{Exp}\left(A_{1} \tau\right)-1\right]+F\left(A_{2}\right)\left[\operatorname{Exp}\left(A_{2} \tau\right)-1\right]+\right. \\
& \left.+F\left(A_{3}\right)\left[\operatorname{Exp}\left(A_{3} \tau\right)-1\right]\right]
\end{align*}
$$

Which is the required stress distribution. This completes the solution of the problem.

ACKNO WLEDGEMENT

The author wishes to thank Dr. M. G. K. Murthy, for his valuable suggestions during this work.

> RETERENCES

1. Davilovskaya, V. I. Prill. Mat. I. Meckan, (1900) p. 316.
2. More, T, Proc. Japain. Nath. Cong. App. Mdel., (1052).
3. Snirimbura, E. \& Ceatrababini, J. G., J. App, Mech., 26 (1969).

b. Loid, H. W. \& Shulman, Y., J. Meoh. Phys. Solids, 15 (1967), 299.

4. Bateman Manueoript Project "Tables of integral Transforme" Vol. 1 TMoGraw Hill, Now York), 1954.
\ll - w

$$
\begin{aligned}
& x-2,2 x, 4,+x,+4=1 x^{2} 2
\end{aligned}
$$

$$
\begin{aligned}
& 2+-2)+2+2,2+2+4
\end{aligned}
$$

[^0]: "'denotes differentiation with respect to r.

