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Considering an orthogonal net in a plane of flow rclatcd to tho streamlines and their orthogonal trajectortt,, 
general physical and geon~etrical properties of steady diabatic Bow are examined. rhis exploration answers how 
far the physical laws are governed by the geometric descriptions of the diabatic flow. Radial diabatic flow fields 
are characterized, from which the flow described by Paib cdn be deduced. 

Quite a good number of problems in aerodynamics and meteorology break through the concept 
ot adiabatic, as the role of heat content cannot be neglected. In general, the heat is either generaied or  
emitted or absorbed during the dynamics state of gas. Considering these facts for the first time, Champman 
and Jouguet, around 1900 during early part of combustion phenomena formulated correctly some fluid 
dynamical problems involving changes in total temperature. Kiebel'sl works classified viscous, com- 
pressible flow intg 'a  number of dynamically permissible types with application to meteorology. Hicks" 
Donald chereive(h3 have studied the physical properties of diabatic flow fields. The role of heat content 
agd the nonknear character of the partial differential equations governing diabatic flow fields have presen- 
ted a series of stringent mathematical complexities. Exploiting the geometric techniques Purushotham 
and Madhusudan4, Madhusudan5 have studied the diabatic flows and have obtained possible flow 
fields in particular cases. 

In the present investigation defining plane orthogonal net related to the streamlines and their orthogonal 
trajectories, various physical and geometrical properties of diabatic flows are studied in more general way, 
from which analytical flows can be obtained if the distribution of heat sources and sinks are advanced as 
depicted in Fig. 1. 

Considering the radial distribution of heat content, radial flows are studied in which isovels touch the 
streamlines and a possible flow is obtained from which the flow discussed by PaiA can be deduced as a 
special case and Chapligan's gas flow fields can be determined. 

Pig. I -..-Strcdmiiae geometry-flow reprosentallon 
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I ' U N D A M E N I ' A L  E Q U A T I O N S  

The fundamental equations governing the diabatic steady gas flows in absence of viscosity and ex- 
traneous forces are given below in the usual notation in Crocco's velocity vector fields. 

2Y -+ v log p, = - -- ( G x cur~  IV - p ~  
( Y - 1 )  ( 1 - W 2 )  + ) 

3 

where W, q , , p, , C ,  Tt , T , S and W are the reduced velocity vector, the heat content 
the adiabatic exponent, the total pressure, the stagnation enthalpy, the temperature, the specific entropy and) 
the magnitude of the Crocco's velocity vector respectively. 

In addition to these we write the Crocco's vorticity rclation for adiabatic flow as 
-+ 3 

I;W Y curl ( Vt W ) = Cl, V  Tt -- T V S  (5) 
This shall bc uscd to study thc rrdiobatic flows. Opcriiting curl on (2) and clin~innting the total prcssurc 

pt we obtain . 
4 -+ + 

curl ( W x curl W -qW ) = o  
1 - wa 

These constitute the integrability for all steady diabatic inviscid gas flows, from which we can deduce 
the conditions' derived by Nemenyi and Prim7 and others"= governing adiabatic gas flows. 

P H Y S I C A L  A N D  G E O M E T R I C  P R O P E R T I E S  O F  F L O W S  

Considering a family of orthogonal curves of congruences 7 (x, y)-constant and t (x,y)-constant 
as streamlines and their orthogonal trajectories, in a plane of flow and 6 as the inclination of streamline 
with fixed direction (x-axis), we have the following geometric results. 

t? 
-1 -1 

where (84 , a,, ) and ( g, , g, ) are the partial diirerential operators and the first fundamental metric 
coefficients. 

The differential relation (8) is due to Gauss8. 
3 + . +  

From the above geometric considerations the velocity vector field W can be expressed as W = ef W, 
' - +  

wllere "6 and W are the unit vector in E- increasing directions and the magnitude of the velocity 
vector field respectively. 

Using this and (7b) in (I), we decompose 



BANGAD : Physical Properties of Plane Diabatic Gas Flows 

It is readily seen from (9) that the ilow is expansive in the regions, restricted by the set of conditions 

C,>C, , W - -- (I, y ) '16 and W I, where W" is defined at points I=[,, in a region of flow. 

1. 
The integral is well defined, if the distribution of heat sources and sinks are advanced. The only integral 

condition is reversed for conlpressive ilow. 
The above stated analysis also hold for Chaplygins gas flows. Further if  isovels touch the streamlines 

[uid W >I,  the flow is either expansive or compressive according to the presence of heat sources or sinks < 
respectively. 

The expansive and compressive nature of the flow is associated with convexity and concavity character 
of orthogonal trajectories of the streamlines. 

If the cross-section of the stream tube is stationary and the heat sources and sinks are given then (9) 
si~nplifics to 

e g,q=a: w (10) 
So, from (10) we infer that the velocity increases or decreases along a strealnine in the presence of 

heat sources or sinks yespectively. The flow can be evaluated from (lo), if the distribution of heat and the 
geometry of strehlines are known. 

The above results can be suitably modified for adiabatic phenomenon. 
U -+ 

Forming the scalar product of (2) by et , we obtain 

So the total pressure re~nains uniform along an individual streamline for all adiabatic gas llows (q=O). 

Further from (I I), the total pressure along a streamline can be determined completely in the following 
form, if the flow pattern distribution of heat and the flows are defined. 

6, 
Thus the geometry and the physics of thc flows describe the flow structure. 

The relation (11) can also be written as 

From (13) it is concluded that the cavities do not exist for diabatic flows. 
The momentum relation along an orthogonal trajectory yields 

So, the potential flows exist only when the isobars touch orthogonal trajectories. 
The total fluid pressure increases along an orthogonal trajectory if y > 0, and (1 - y )  > 0, 

(1 - W2) > 0, the pressure is decreasing function along orthogonal trajectories, if 0 < W < 1, 
y < 0 and ; > 0. 

The integrability condition (6) simplifies to 
-1 -1 

9, 8 1  -- . ' I I  at A, = A, K - I -  At Kt 
-1 

where At = qW 
W ( 1 - W 2 )  21nd A = -- 

'I 
!I1 !72 

a9 (gl w )  (16) 
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The above relations arc true for diabatic flows in general and particular flows can be obtained itssign 
ing various geomctrics to the streamlines. 

For all adiabatic flows, the above equations can suitably be modified and the Crocco's vorticity r1;lu. 
tion (5) has to be read as under 

R A D I A L  F L O W  F I E L D S  

In this section it is proposed to find analytical radial diabatic flows, in which the flow fields i1l.e f.l,ic. 

tions of the radial distance, which include the flows discussed by Pai6. 
3 

Following Pai" the Crocco's velocity vector field W can be expressed as , 

3 

where i, is the unit radial vector. 

The integrability condition (6) is satisfied for the distribution of heat sources or sinks; since \ha 
I ~ c a t  content is independent of 8. 

The principle of conservation of mass expressed by (I) can be read as 

The analytical flows can be obtained from (Ill) ,  if the distribution of heat sources and sinks are advancctl @ 

A possible flow of (18) is 
1 -  A j f ( r )  dr 

W ( l - 1 Y " )  = e 
I 

(19) 

where f(r) is an arbitrary function of r. 

If f(r) = k say, the general flows are - 

From these we can obtain the flows discussed by Pai" by selecting the parameters h and X 
prope~ly, from which Chaplygin's gas flows can be deduced as a special case. 
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