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In the presentnote, we study the conditions for propagation of interface waves when one of thesolids is a thermo-
elastic halfspace and the other an elastio halfspace. The propagation of plane waves along the interface is studied
and thefrequency equation is derived. In view of the complicated form of this equation,two limiting cases corres-
ponding to very high or very low frequencies are studied. It is also shown that when the coupling constant in the
thermo-elastic solid is put equal to zero, the frequency equation reduces to the equation derived by Stoneley. As
another particular case, the frequency equations corresponding to very high or very low wave lengths are obtaired.

The propagation of generalised Rayliegh or Stoneley waves along the surface of separation of two elastio
solids, was thoroughly investigated by Stoneley! and others. Stoneley derived the corresponding frequency
equation, whose solution has been further studied by Koppe, Sholte and others, and conditions under
which Stoneley waves can exist have been derived. In the present note, it is proposed to study the conditions
for propagation of interface waves when one of the solids is a thermo-elastic halfspace, and the other and
elastic halfspace. The basic equations for wave propagation in a thermo-elastic medium adopted here are
those given by Chadwick?. Ina subsequent paper Chadwick? has discussed the Rayleigh waves in a thermo-
elastic halfspace. As usual, we assume welded contact at the interface between the two solids. The elastic
halfspace is assumed to be at constant temperature T, throughout, with no coupling between the two solids
i.e., between the elastic and thermal fields. Under these assumptions, the propagation of plane waves along
the interface is studied and the frequency equation is derived. In view of the complicated form of this equa-
tion, two limiting cases of this equation corresponding to very high or very low frequencies are studied.
Tt is also shown that when the coupling constant in the thermo-elastic solid is put equal to zero, the fre-
‘quency equation reduces to the equation derived by Stoneley. A8 another particular case, the frequency
equations corresponding to very high or very low wave lengths are obtained. :

BASIC EQUATIOXNS

We set up the coordinate system (z, ¥, 2) with the z-axis along the interface and the z-axis normal to the
interface with z >0 in the thermo-elastic medium. The components of the displacement are then giver

by
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Denoting the variation of temperature by 6, the equation satisfied by ¢, ¢, 8 fozf' the thermo-elastic
‘medium? are : . .
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For the purely elastic medium the equations (distinguishing the corresponding quantities by a superscribed
prime) are : .
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Here (V.p, Vg ), (V'2, V'3 ) denote the compresswnal and, shear wave velocities in the two media and p,pl

_ the densities; k, ¢ and T, are respectively coefficients of the thermal conductivity, the specific heat at cons-
tant strain and the initial temperature of the thermo-elastic solid; a.is its coefficient of volume expansion
and zp is its isothermal compressibility. The elastic medium is supposed to be of infinite oonductlwty and
at temperature T,.

'For vertically polarised plane waves propagated in the -direction, we shall seek @olutlons in the form:

. ¢. $)= (0 ¢, 9) exp [i (17 — ot) ]

and in order that their amplitudes become vanishingly small, as|z| —oo these solutions must be of the -

form?
For 2> 0 ) .
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where {2, 22 are the roots of the equation :
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For 2<0 | |

B = A exp & VE LR i} = O exp {2 VAT + iz}
where {'; = w/V'r and {'y = «/V's.

‘ BO‘UNDARY‘CONDITIONS )
(@) As 12|~ o0, the amplitudes tend to zero. ThlS condition is satisfied by the forms. assumed for th

above solution. \
(5) The stresses o, and o, and the displacements (u,w) are continuous across 2z = 0.
() =10 for z=0. - _ - ‘
Using the expressions: D =
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the boundary conditions y1eld the following five equations for the constants 4, B, C, 4/, & C:
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then the above five eQua.tions;yield the determinantal equation:
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If D=pV?%— - p' V% = constant and E = % — {21, then the above detenmnantal equation can be
written as :

4D (g — ¥, 872) ( A82~n2E>+4Dw2n2[pE<n2—8'I 8y) + 0 (A8 —n2E)]

bt [(FAFERE) (p8y+ %) —En?(p—p')2] =0 (4) -

This is the desired frequency equation. Since this is of a complicated form, we discuss some limiting cases.

: ‘ PARTICULAR CASES

Waves of given period (w fixed).

We now introduce the dimensionless quantity :
' X = w/o* ; w* = pc Veplk

and consider the cases when: X << 1 & X >>1

(o) Suppose x is small. (X << 1). The frequenoy equation (4) when expanded, in poﬁefers of y upto
the power X7 takes the form: . X

X(iP4y@+BR+. . .)=0,
where P, Q, R are real valued expressions in ¢ and 5. If ¥ and higher powers are neglected, then the

- frequency equation takes the form: P + XQ+X2R= O Therefore, the wa.ve-veloclty depends on the
frequency.

(b) Suppose X is large. (X >> 1). The frequency equa,tlon (4) in this case takes the form :
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1f we divide throughout by 5%, then we get the following equa,tlon for U= w/'r], the phase veloclty of the
interface wave:
U{ (pVr+p' V) (pVs+p Vs)—4pDy2} l
42 (p—p' PV2 VsV Vs+4Dp' Ve Vis—4D%} =
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Therefore the veloclty of the wave depends on the wavelength. Hence there is dlspersmn in this case -
also.
‘ (¢) Suppose e is small ( ¢ << << 1), then €2 ¢ and higher powers of ¢ may be neglected. Let
K* = '\/ 72 —1 wz/yz,l. X Vzé = w2/V2T (X— t)
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Then the frequency equation (4.-) takes the form v .
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In particular, if e = 0, the frequency equation reduces to
S , M5+ N=0
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This equation is nothing but Stoneley s frequency equation. This is as it should be, since. for € =0, there is no
coupling between the elastic and the thermal fields, and the case reduces to that of two elastic solids. In view
of this, it may be concluded that for small values of ¢, interface waves exist under the same conditions as in
the case of pure Stoneley waves.

Waves of given length/(n fized).
. We now introduce the dimensionless quantity :
E=afr* 5 1=y
and consider the cases when ¢ < < | and £>>1.

(@) Suppose ¢ is small. ( £ < < 1). Then expandmg in powers of ¢, the frequency equa.tlon takes the form
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(b) Suppose ¢ is large. ( ¢ > > 1). Then the frequency equation (4) takes the form :
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It is observed that in case (a) the wave-velocity depends on the freqliei_;cy, but. is a constant in case (b)
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