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~ i i t e a d y  laminar flow of a dusty viscous inco~npressible fluid through the annular tube formed by two coaxial 
. .. circular cylinders is discussecl under two situations : (i) when the pressure gradient varies harmonically with 

time: and ( i i )  when there is an exponential pressitre gradient. The flow through a circular pipe is ohtained 
as a particular case, making the radius of the inner cylinder tend to zero. 

The study of the motion of dusty viscous fluid is not merely interesting in itself but has application 
in a wide variety of situations. Such situations arise, for instance, in the movement of dust-laden air, in 
fluidization, in the use of dust in gas cooling system and in sedimentation in tidal waves. 

Several studies have already been made by various authors1 to understand the effect of the presence 
of dust, using'saffman's model2. 

F ' '  In this paper;a6e consider the m3tion of unsteady, incompressible dusty viscous fluid through the , 
annulus formed by two coaxial circular cylinders in two cases : (i) when the pressure gradient varies har, 
mo&ally with time and (ii) when the flow iq subjected to an exponential pressure gradient; and the re- 
sults for the case of flow through a circular cylinder are obtained by making the radius of the inner cylinder 
tend to zero. 

G O V E R N T N G  E Q U A T I O N S  

The equations gove&ing the motion of an unsteady laminar flow of a dusty, viscous, incompressible 
fluid as given by SaffmanQre 

where; and ? denote the local velocity vectors of fluid and dust particles respectively,, p is the fluid den- 
sity, p the fluid pressure, v the kinematic viscosity, N the number density of dust particles, K the Stokes 
resistance c~efficient (for spherical particles of radius it is 6 wple), p the fluid viscosity and m the mass 
of a dust particle. 

Consistent with the 'geometry of the problem, we take the cylindrical polar coordinate system (z, r, 4 
so that z-axis coincides with the common axis of the cylinders. The flow is directed along this axis, and is 
symmetrical w.r.t. it. Consequently the velocity vectors7  andThave only z-components. If u, v denote 
the component of velocity of the fluid and that of the dust particles respectively in z-direction, we have from 
(2) and (4) ,. , 

where by symmetry, uand v are independent of fl and the number density N of the dust particles is assum- 
ed to be constant No throughout the motion. Thus, we see that tl and v are functions of the radial djs- 
t11nco r only, 

f , *  
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The equntione of motion then reduce to 

- a *  =--- 
a t r T r  (6) 

and 

where 
m mnb 

7 
K P L .  

,- , 
(8) 

2 I , /  + .  
are the relaxation time and mass concentration of dust particles, respectively. ' r d *  v 

I r ' *  . - 
S O L U T . I O N  O F  P R O B L E M  

Case (i) : Firstly, we consider that the pressure gradient varies harmonically with time. Assuming 
axial symmetry, we take 

u = + ( r )  e - f w t  (9)  
v = + ( r )  e - f a t  (10) 

where dl and 4 involve only r and p, is a real constant. 
~dbstituting (9) to (1 1) in (6) and (7), we obtain 

and 

where 

and 4'. 

4 = POIP # 

#A (1 5 )  
The boundary conditions for the flow through the annular pipe formed of two coqi&ci~cular cylinders 

'with radii, r=b and r=a ( 0 < b < a < 60) are 

4 = 0, when r = a, b 
(16) 

Writing 4 = x(x) + Q/hz equation (12) can be transformed into 

where x = hr. 
Solving (17) we have 

4 = A JO ( hr) + BY, (hr) + (QIA2) 
where Jo and Yo are Bessel fundions of the first and second kind, both of order zero and A and B arc 
consta'hts. The boundary conditions (16) yield 

where 
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We have, in factZ 

Consequently, we have the solutions 
, 

Q Q A + = T * . A , * =  ,-.,jar 

where 

n = [ Y o ( h a ) - - Y , ( h b ) ]  J o ( + r ) - -  J o ( h a ) - - J o ( h b )  Y o ( A r )  + 

+ [ J o ( h a )  Y . ( W ) - -  Y o ( h a )  J o ( A b )  ] 
I 

(23) 

and therefore the velocity components u and v of the fluid and dust particles respectively are . . 

.O 
where D and A are given respectively by (21) & (23). 

Case ( i i )  : Now, we consider that pressure gradient varies exponentially with respect to time and 
assuming axial symmetry we take. 

u = +  ( ~ ) e - " ~  . (26) 

e-at 2 = po 
a* 

Working as before, wc obtain 
Q & - a t  0 A1 1 - ot - C ( =  - 

A '  Dl . e ; v = - -  - e h12 Dl ' 1 - a7 

and Dl and A are obtained replacing A by A, in (21) and (23) respectively. t 
The case when the pressure gradient decreases exponentially with time, can be considered similarly 

by taking u instead of - o ; o being taken positive in both the cases. 
, 

P A R T I C U L A R  C A S E S  
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and noticing that8 
88 
we get 

which agrees with the corresponding result got by Kishore & P d e y 4  for the flow of dusty viscous 
liquid through a circular pipe and therefore the velocity fields tally in this limiting case, i=b  excepted, 
being a point of singularity. 

It is obvious that similarly one can obtain results in Case Gi)  too. 

F L U X  A N D  D R A G  

,We now consider the flux and Skin friction drag due to the motion of dusty viscous fluid through a 
circular cylinder, using the expression for the velocity of the fluid given by (31). - 

The flux per unit length is given by f '  

where u, the velocity of the fluid in the axial direction, is independent of 8 ; and the formula for the drag 
acting on the curved surface, per unit length of the cylinder is 

where T , , ~  is the z-component of the thrust on a surface whose outward-drawn normal is n and ds is 
the elemental arc length. In our case, 

2n 

D = p 1 (rJG-) a 0  = 2 r P a  
r = a  (33) 

0 

If we retain terms up to 0 ( I X 13, we get 
w a4 -i w t 

Q =  - 
8 P 

Po f? 

D = a2 p,,e -i w t . , . . 4 

which expressions are those of the clean fluid6. Thus it is observed that the influence of the bresence of 
dust is not felt up to 0 (RIP). Hence, retaining terms up to 0 (1 h 13 in the Bessel fugtion expansions 
we find that Q and D may be put as follows when we write the real parts only. . 

- - r k w-1 cos o t - ( k/4 v ) sin w t ) 
L l o  + 

+ [kf p - 1 w a ( ~ r + a ) 1 4 ~  1 
l a  

where 
k = n a 4 w p , , , a = c o t - l o ~ ,  0 = ( 1  + w a ~ e ) +  

[ 1, is the clean viscous. flow part; and [ I d  is the dusty viscous flow part of the flux or drag, 
as the case may be, 



, , 
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We observe'that the'presence of the dusty particles in the fluid is to decrease the flux and to increase 

Is-' cos ( w  1 + u )/96 pv 

v) f / l+ l cos (wt+a )  (36) 
from physical considerations. 

p-1 = (1 f w2 7 2  )-lk =: 1 - a W 2 7 2  

a1 drag due to the of dust decreases as T increases up to a critical 
level giben by 7 ,,it 6 = fiw. This agrees with Saffman's observation that when T is small, which 
corresponds to the case of the dust being fine, the effective kinematic viscosity is reduced. Again, for 
large T ,  we hav; u~;;,,,~,~~;i:l, : 

1 
) f @ - 1 = ' f (  w 7 ) - 1  ( I +  ) - -  ( 1 -  2 ~ 2 ~ 2  

~> ' :* a< ,: , 
'- $0-1 [ I +  0 { ( . . ) " l  I . . 

, >.$ 

,?.' , # \ .  . I 
where 13/ > 3 3 ; the additional drag Dd varies with r ol-1 in the case of coarse dust. , , ' ; 

' 1  p . ! 

* { % *;/&. : 2 t '  } , a 

For the anndus between two coaxial cylinders the flux is < .  . + ,  .' 
6 . \ *.? : ' 

US *', asg- io t  [ ( 2 4 n ~ / A 2 )  + 3 a A (  8 - -h2a2)  + 
: -.r +:. '.L: QA. a - \ 

F 24 * 
, $4": w,, * * * :  

- 5  > , 'i 

( la' a + 2 B  A a 2 ( 4 - - 3 a ) + ( 3 1 o g + h a + y ) ( 8  - - P a ? )  I ]  
where is the Euler's &stant. The drag per unit length on the curved surface of the outer cylinder r=a 
is 

A =4pnAa A J f , ( A a ) , + B Y 6 (  h a )  . [ 
DEDUCTION!S  

I 
1 

! f 

cles from the expressions by making f = 0 results in a11 the flow quan- . 
tities of noidusty viscous flows being regained. 

2. A ieneral analytical discussion of the velocity expressions got for the annular tube being dimcu 
we confine the discussion to two situations of the particular case discussed in the section of particula 
in this paper vh,  when the frequency is very small and when it is very large. 

j a 

If mass con&ntration f is large, retaining terms up to 0 (f-1 ), we have 
l - i w ~  v T 

I i v .*.' -- 
1 + f  

(37) ., 
v' 

For oscillatory flow through a circular cylinder, we have found the velocity of the fiuid at (31) which 

(38)' 

a series and retaining only up to the quadratic terms we obtain the . 

the case of very small values of the dimensionless group 'q&a ' 

which corresponds to very slow o s c i l l ~ s .  
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Here, we have considered T to be large which means that the dust particles are coarse so that 

Now equation (34) reduces finally to 

. ,. 
P P,, 1 

O( ( r ,  t )  = - -- - 
4 v  ( 1  f f )  

(aa - ra) oos w  t 

where we have taken only the real part on the RHS. 
Again, using the asymptotic formula for the Bessel function expansion6 

- 
we obtain the velooity expression for very large values 'of .t/ wlv a, as 

where we have taken the real part only. Provided that we put f=0 in the RHS of the (41) and (42) they 
agree with the corresponding velocity expressions (4) for the oscillatory, non-dusty viscous flow through 
a circular pipe. 

It may be observed that in this case namely, when T is very large, the velocity of the dust particles 
vanishes both in slow and large oscillations as it can be expected since the fluid will not be able to move parti, 
cles of large masses. 

In case T is small 

1 i w  
we have for small osciUations 

4 v 
(1 + f ) (a2 - r2): 

So, the velocity of the fluid in this case is 

U = - -  (a? -- r2)  Eos w  1 
4 v 

where we have taken the real part only on the RHS. 

This shows that the velocity distribution for small T is basically same as for clean fluid which is in 
agreement with the observation made by Saffman. 
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