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Unsteady laminar flow of a dusty viscous mcompressxble fluid through the annular tube formed by two coaxial
circular cylinders is discussed under two situations : (i) when the pressure gradient varies harmomcally with
time; and (ii) when there is an exponential pressure gradient. The flow through a circular pipe is obtained
as a particular case, making the radius of the inner cylinder tend to zero.
The study of the motion of dusty viscous fluid is not merely interesting in itself but has application
in a wide variety of situations. Such situations arise, for instance, in the movement of dust-laden air, in:

fluidization, in the use of dust in gas cooling system and in sedimentation in tidal waves.

Several studiés have already been made by various authors! to understand the effect of the presence
of dust, using'Saffman’ s model2.

In this pape;;aﬁze consider the motion of unsteady, incompressible dusty viscous fluid through the
annulus formed by two coaxial circular cylinders in two cases : (i) when the pressure gradient varies har.
mottically with time and (ii) when the flow is subjected to an exponential pressure gradient; and the re-

_sults for the case of flow through a circular cylinder are obtained by making the radius of the inner cylinder
tend to zero. , :
" GOVERNING EQUATIONS

The equations govefning the motion of an unsteady laminar flow of a dusty, viscous, incompressible
fluid as given by Saffman? are _
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where u and v denote the local velocity vectors of fluid and dust particles respectively, p is the fluid den-
sity, p the fluid pressure, » the kinematic viscosity, N the number density of dust particles, X the Stokes
resistance coefficient (for spherical particles of radius ¢ it is 6 mue), p the fluid vnscosnty and m the mass
of a dust particle.

.

Consistent with the geometry of the problem, we take the cylindrical polar coordinate system (z, r, 0)
so that z-axis coincides with the common axis of the cylinders. The flow is directed along this axis, and is
symmetnca] w.r.t. it. Consequently the velocity vectors ¥ and v have only z-components. If u, v denote

“the component of velocity of the ﬂUId and that of the dust particles respectively in z-dnrectlon we have from
(2) and (4)
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where by symmetry, #and v are independent of 6 and the number density N of the dust particles is assum-~
ed to be constant N, throughout the motion. Thus, we see that » and v are functions of the radial dis-
tance » only. .
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The equations of motion then reduce to

pu __ 1 ap P L au\ 1
A 3z+v(ar’ + rr)—l-T(v u) . (6)
and
9
T At =u—29 (7)
where
. -_—.7(_a¢1,f__;‘7o ®)

 are the relaxation time and mass concentration of dust particles, respectively. -

SOLUTION OF PROBLEM

Case (z) Firstly, we conmsider that the pressure gradlent varies harmonically thh time. Assummg
axial symmetry, we take _ -
(r) eiawt o )

=y (r) e—iwt ‘ o (10
ap

= poiet | RS (3))

oz
_where ¢ and y involve only r and p, is a real constant.
Substituting (9) to (11) in (6) and (7), we obtain

‘

a2 d '. L o
sy L 280 twgm=e o a2)
and . '

b () = (r.:““—)m) o

where : | |
e = I "
and | i
Q = po/p - (2

. The boundary conditions for the flow through the annular pipe formed of two coamdf tircular cylinders
with radu, r=band r=a (0 < b<a<qg)are . »

¢ =0, when r=a, b
’ (16)
Writing ¢ == x(x) + QX2 equation (12) can be transformed into N
L. ¢ 1 )
&t m A ! an
where x == Ar.
Solving (17) we have . _
¢ = A Jy (Ar) 4 BY, (Ar) 4 (Q/2%) ' 2 (18)

where Jo and Y, are Bessel functions of the first and second kind, both of order zero and A and B are
‘constants. The boundary conditions (16) yield

A= T?ﬁ [Yo(xa)~yo(a§)] e (19)
B=~-X%—,[J0(Aa?—J,(Ab)] (20)
where ' .
D=Jy(Aa) Y, (AB)—Jy (Ab) Xy (R9) @
—- H
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We have, in fact?

‘ Jy(Ar) = Z(._l e (Ar )%/ 22% (k1)2
. » k==,
Consequently, we have the solutions
e S _ 9 _ 9 A
= %52 ¥ TD T"iar @

where

A=[Yo()\a)—-Yué)‘b)]vJo(A,r)-—.[ Jy(0a) —Jy () ]Yo(Ar)+

+[ To(2a) Yy () — Yo (2a) Iy (3) ] @)
»and therefore the ycloéity components ¥ and v of the fluid and ‘dust particles respectively are
- | © = —%— . -%—.e;—i"vt : (24)

F '
where D and A are given respectively by (21) & (23).
Case (if) : Now, we consider that pressure gradient varnes exponentially with respect to t:me and
assuming axxal symmetry we take.

u=4d (1‘)8—'0' , (26)
Vzlﬁ(r)e—ﬂ. (27)
0p _ eTot
3% Do ()28)
Working as before,“ we obtain
w2 L e @ A 1 —ot
“",— ,Alﬁ'. D]_ . € y v = A12- Dl. ' 1___0'1. e ‘ (29)
where » ' \
A2 = — ( 1+f—or .
1 v 1—or |

and D, and’ A,( are obtamcd replacing A by A, in (21) and (23) respectively.

The case when the pressure gradient decreases exponentially with time, can be considered similarly
by taking o mstead‘ of — ¢ ; o being taken positive in both the cases,

PARTICULAR CASES
Writing ¢ as | |
Yo (2a) Yo (M) ‘)
::Ab) —1 )— Yo((;\b) (Jo(l\a)—-Jo()«b'))

[Ja()m) Jo () }'zi‘,’f;]

' Jo (A1)
0 0
¢='= —’\Tf 14

("<b<a<ow) (30)
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and noticing that3

08 b >0, Yy(N) »>—00
we get ,
‘ Q Jo (M) : ’ .
¢ == T[‘ J:(M)] ey

which agrees with the corresponding result got by Kishore & Pandey* for the flow of dusty viscous
liquid through: a circular pipe and therefore the velocity fields tally in thns limiting case f—-b excepted |
being a point of singularity.

It is obvious that snmllarly one can obtain results in Case (i) too.

FLUX AND DRAG . ,
. We now. consider the flux and Skin friction drag due to the motion of dusty viscous fluid through a
cnrcular cy]mder using the expression for the velocity of the fluid glven by (31).
The flux per unit length is given by _ [

a 27

Q= | ]Wdﬂdr::%r j’urdr‘ - o (82)
0

* . where u, the velocxty of the fluid in the axial direction, is independent of 8 ; and the formula for the drag

acting on the curved surface, per unit length of the cylinder is
D="% 1, ds

(4

where 7,, is the z-component of the thrust on a surface whose outward-drawn normal is n and ds is
the elemental arc length. In our case,

27
= , 0% = 9 kbl .
D=y f ( 7 )r=a a0 ”“a(gr)r=a‘ (33)
0 , . .

If we retain terms up to 0 (JAJ2), we get
wat —iwt

Q= 8“])0 €

D= ma2pe—iwt L.

which expressions are those of the clean fluids. Thus it is observed that the influence of the “presence of
dust is not felt up to 0 (IN?). Hence, retaining termsup to O (JAlY)in the Bessel fubction cxpansnons
-we find that Q and D may be put as follows when we write the real parts only.

Q Qc"l“Qd ‘
=[ (kw1003 w /8 p ) + ( ka? sin w ¢/96 pv ) ]c +

" +[—ka2f3 cos(wt—}—a)/%yv]d . _ (34)
D =D, + D, ‘ l ‘
= [kw—IGOSwt——(k/'iv)sinwt)] +

[

J

-rra‘wpo,ot-—~cot—-1w-r,B-——(l—l—w2 )t

[ 1. is the clean viscous. flow part; and [ 1 is the dusty viscous flow pa,rt of the flux or drag,
as the case may be,
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-~ We observe that the presence of the dusty particles in the fluid is to decrease the flux and to increase -
the drag on the walls ot’ the cylinder by amounts '

; Lo Og=katfp—1cos(wt+ «)f96 pv
and 1 Dd=(k/4u)fﬁ-1cos(mt+a) o ©(36) .
respectnvely, as can be expected from physical considerations. - ' o

.Now, for small values of =, we have
: i B~ = (1 + «? 2)"'%"'1—-! wzrzu
which shows that the addmonal drag due to the presence of dust decreases as r increases up to a critical
jevel gwen by 7 erstt= 4/2/w. This agrees with Saffman’s observation that when r is small, which
corresponds to the case of the dust being ﬁne, the eﬂ‘ectwe kmematnc viscosity is reduced Again, for
: large ™, We have Coes N . B

. 1 —_ . - 1 N = . 't‘ ;
o~ ~—1 e . <
wa 1'2 ) '—‘f (w T ) \ ( 1 2(02 1_2 ) S kr ',

‘. .=,s_rat*~'1 [ 1+0{(‘”“')'2} ]

the addlttonal drag D, varies with s @—! in the case of coarse dust

For the annufus between two coaxtal cylmders the fluxis

‘l’f.ez:“‘" [(241,9/») +374(8 —Na)+

t

+2B{ a2(4——3a)+(3log%)\a+y)(8 ~—A2a ) } ]

where y is the Euler ] constant The drag per umt length on the curved surface of the outer cylinder r=a
is- o

Eid
(S

;‘DA 4pw)\a[AJ'(4\a)\+BY'(Aa)]

DEDUCTIONIS y ,“’

1. Removal’ of the dust partxcles from the expressnons by making f= 0 results in’ all the ﬂow quan-n‘
tities of nondusty viscous flows being regained. o
2. A general analytncal discussion of the ve?ocnty express:ons got for the annular tube bemg dnﬂicult _{; 7
we confine the discussion to two situations of the particular case discussed in the section of pattncular cases
in this paper viz.-when the frequency is very small and when it is very large. S
If mass concentratlon ‘fis large retammg terms up to 0 (f~1), we have

S
v vr

w T+ 1+7

) e ;VW‘ . Jo (;\,.) A , . ) ;.“,
¢ LA W » o o
o w [ 1 Jo (Aa) ] B . (38) '
Expandmg the‘BesselJ.functxon in a series and retammg only up tothe quadratic terms we. obtam the

. following expressnon “which is valid for the case of very small values of the dimensionless’ group \/ w/y a
- which corresponds to very slow oscnlla&ons “
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Here, we have considered = to be large which means that the dust particles are coarse so that

) 1 —1 i :
e e e
Now equation (34) reduces finally to
uln ) = — L0 i-f) (6 — 1) cos wt » “1)

where we have taken only the real part on the RHS.
Again, using the asymptotic formula for the Bessel function expansion®
Jo(Z) ~ / 2fr Z Fi—1
we obtain the velocity expression for very large values of 4/ w/v a, as

u(r,;)=i—¢u—(%11_9{_—ﬁe“'w'[ A/--_ exp {_(1-_z)J (@ —r) }]

- i e [T e ) i [ w0

where we have taken the real part only. Provided that we put /=0 in the RHS of the (41) and (42) they
agree with the corresponding velocity expressions (4) for the oscillatory, non-dusty viscous flow through
a circular pipe.

It may be observed that in this case namely, when = is very large, the velocity of the dust particles
vanishes both in slow and large oscnllatxons as it can be expected since the fluid will not be able to move parti.
cles of large masses. :

In case + is small

. iw(l—}-f—-—iw‘r NJ'_E'_ _
3= v l—twr v (L +1) _ : (43)
‘ illati JoAr) 1 1 ie sy
we have for small oscillations [ 1— AT } ~— 3 1 +f) (@ —r2). .
So, the velocity of the fluid in this case is .
w=— A0 @ ) st PR
[ 4 €,
> ‘.(

where we have taken the real part only on the RHS.

This shows that the velocity distribution for small = is basically same as for clean fluid which is in
agreement with the observation made by Saffman.
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