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The problem of a thin elastic plate in the form of Pascal’s limacon under concentrated forces at the extremeties
of its axis has been . solved by using.complex variable technique. The solution has been  obtained in a closed
form. Stress components have been found out. In particular, the solution of an elastic circular plate and that of
a pziat% in the form of a cardioid have been discussed. The variation of "stress—intensity factor has  been
studied. g

Complex variable methods to solve two-dimensional boundary value problems in elasticity have
been developed by Muskhelishivilli'. Later on, these methods were exploited by various authors 2.3,4&5
to solve variety of problems. Milne-Thomson? has, however, used the method of analytic continuation
across the boundary of the plate. Using this method he has solved the problem of an epitrochoidal oval under
two standard concentrated forces at the ends of its “major” axis.

In the present paper, the same method has been employed to solve the problem of a thin isotropic elastic
plate in the form of Pascal’s limacon under two standard concentrated forces at the extremeties of its axis.
The solution has been obtained in a closed form. Solutions for a circular plate and that for a plate in the form of
a cardioid can be obtained as particular cases.

FUNDAMENTAL FORMULAE

The boundary of a thin homogeneous isotropic plate in th_e form of Pascal’s limacon is assumed under the
action of two standard concentrated loads at the ends of its axis. We denote the boundary of the plate byy
and the region inside and outside it by L, and Rj respectively.

' The transformation function ‘
z=m (§) =c(§ + K&) )

where ¢>0,0<K <} 2= .06%'76 » &= re'?

maps the boundaryy of the limaconin thez-planeon to aunitcircle I' in the ¢-plane. The region inside and
outside v are mapped on to those inside and outside I" which are denoted by L and R respectively.

Determination of two potential function W (£) and w (€) gives the complete solution of the problem.
Stress components rr, 78 and 86 are given in term of these two potential functions as follows*,
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Following Milne-Thomson, we apply the continuation theorem for the circle to equation (2) to give
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where o = e’9 plo) is the pressure 5(o) is the' shear and 4 (£) is continuous across I' and its form is
~ obtained by considering the smgulantles ofm" (&) W (§) in the region R. The analytic continuation in R of

(2) is obtained by writing zero for " +ir0 and——. for éas.follows. '

3
0w (L) s o 7 (1) e hm(1)5(L) o
Again; from (5), by ;wrifcin.g ?fof —1 and 1 for £ and takingthe complex bbnjugate‘, we get
meue =5 W () [meo+7 ( H-7(F)re e
SO T | (¢in L)

The function w (§)must be holomorphic in L. The equation (6) will be'used to exprgés the holomorphy condi-

tion which will enableusto find the unknown . constants of y'(£) in (4). However, we can dispense with the

function w (£) expressing stresses in terms of W (¢) and its continuation in R. Takmg the compléx conjugate
- of (6)-and then ehmmatmg w (€) from (2) and (3), we get.

2¢ ' (f)[ﬁ+m]=£»m’(§)W(§)~-—;—m' (»—;:)W (%) + ; | \A
’\+[fﬁb’(6)+'%‘m' (e-i-—)]w @+ [‘m@) (—;) ] £ W':‘ @ | K
257\n’(£)[£+¢2}? ]- ' (f)W(f) G ‘ ) (1)

oo ppFa[monire
The displace;neht ;oﬁponéhtsAa‘énd v, m a similar’manner,' are"given by. | |

" %("“v);—@x e’ <55,W<f$+[%?fb;“ (=) —em (é)‘]é,‘vff @ +

§
PRI (—1»)@ W (1)+ [ b_m (2 ] D 9)
)i () [ reon (F) e 7o v
. 3—v : ; . ; 7 '
where z = T 0 P and » are the modulus of rigidity and Poisson’s ratio of the material of the

plate. ,
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SOLUTION OF THE PROBLEM

The transformation function (1) maps the limacon y in Z-plane onto aunit circle I" in £-plane. Ihe
anti-clockwise sense of description of y is taken to be positive. Asy is described in Z-plane in the positive
sense, I'-is- also described in the same sense in &-plane as shown in Fig. 1.

[

9

§- plane

Z - plane .

Fig. 1—Transformation of Pascal’s Limacon on to a unit circle.

~

From (1), the parametric eduation of the boﬁndary v of the limacon are given as:
' & = ¢ (cos 8 4 K cos 26) | ‘ (10)
y == ¢ (sin. 0 -+ K sin 26) » (11)

where the parameter 6 is the vectorial angle of any point on I'. Points 4 andB on the contour y correspond to

0=0and 6 =. Let the distance ¢(1+-k) andc (I—k) of 4 and B from origin be denoted byaand b respecti-.
vely. The whole boundary y of the limacon is unloaded except the two points 4 and B where standand

concentrated forces F and —F act to keep the plate in equilibrium. In infinitely small neighbourhood of
. these points, the stresses are unbounded. Physically this difficulty is resolved by plastic yielding. This being

" in a very small region near these points, we think these forces to be applied as distribution of stress over

small areas round 4 and B instead of being concentrated at these points. Lete be infinesimaland we take two

points 4,, 4,; B,, B, onthelimacon given by .

.zA1=a(1——e)',zA2,=a(1_{_e) 1

~ . ) {12)
| B =b(1—de) B, =—b(14ic) | -
The standard concentrated forces F will be obtained as the limit when -0 of a unifom stress distribution
_ givenas

. F o,
_p(a)-{—ZS(o):—é&e— onarc 4y 4 As ] /
| | N { | (13)
and . — o) +is(e) =g~ onarwB BB, |
The form of the unknown ¥ (£) in (4) is obtained by considering the singularities of m'(€) W(&) in R. Since

R, contains the point e and m(€) = ¢ (¢ + K&%) hasapole of order two at € = co, it follows that m'(£)
W (€) will have a pole there of order one at most. Hence, we can write

‘ ¥ (&) =43+ Bij¢ ‘ (14)
where A, and B; are unknown constants. The equation (4) reduces to '
, 1 P o(142k) 1 F c(132Ks). o
m' (§) W (€) = ge——:f—-da‘—l-;i b ——a-_Tc-dc+A3+‘]?3§
A, AA, B,BB, X
which then reduces to : / ‘
7 , o
m’ (f)W(‘f): 27,,;:%'[21{ (0A2~‘0A1) +(1+2K£)ln{( O'Az_‘f)/( OAI““f)}] +
+ | % (= n) + (+2BOL{ (n— ¢ (75— )] )
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Since on the contour v, dz=jeq on going from Ato 4, and dz=iecbon going from Bto B, thus to the first
order we have , ,

rew

. — e . . o, — o
do = (152E) = f1(¢), say, on going from %4 =1t0 %4,
~and _ d? =ém‘5 =f2 (¢), say, on going from °p = — 1to “p, ,
Therefore ' : \
04, =1 —f,(€), C4, =1 - fi(e)
1 _4 1 2 i 1 (16)
B=—1+f1(), %8, =—1—fa(e)
Equation (15) using the logarithmic series in the form 1,(1--pe) =pe, reduces to
o 9F 1 “ ;
e(1+2KE) W(E) = gl + Ay + Byt 17

The unknown constants Az and B, will be found using the holomorphy condition of the function w(¢) given
by (6). By Laurent’s expansion, the function w(£) can be expressed as ‘

| ow (§) = Qg— - g—;er % +9(® e )
where Dy =2KA4, + B, '+ 4KF|m - 1 e
‘ Dy =21 — 3K?) Ay — KBy + 2 (1 — 6K ) Fjr 5 1
Dy = 4K (3K? — 1) 43 -+ 2K? By +4K (6K* — 1) F/n
and g(¢) is holomorphic in L. Since w(€) is to be holomorphic in L‘, we must have -

- Equations (20) form a system of three simultaneous equations in two unknown quantities 4, and B,. The
equations are consistent since the determinant of the coefficients of 4; and B; vanishes. Solving, we get

4 FeEr—1
G | 1)

7 9K* —1 J

Since the boundary is unloaded, equation (17) gives W(¢) for ¢ in L and for ¢ in R. For X = 0, the

solution agrees with the known solution for a circular plate. For K=1/2, the limacon of Pascal becomes a

cardioid. In this case though m’ (§) = 0 at £= —1, no contradiction with the general theory arises
- since in the case of the cardioid the boundary has a cuspl. . -

EXPRESSIONS FOR STRESSES

~

Components of stresses can be easily found'fr‘om the

equations (2) and (3). However, the expressions
for stresses on the boundary r=1 are given as follows. : ‘

Ffz cosec? 0 24,

~~ A—_ ‘— ‘ ) 2B3 R
~  Focosec®0( ) . o
[/ =— - 7 {fz-{- 2sin?0 (3 4- 4K + 2K cos 0 ) + 6K sin, 6 sin 20 }_|_
) 2A3k B3 .
\ -+ A (14 2K cosf) + 2o i (8 +3cesh) | (23)
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~ - KF cosec? 8

and ".0:_—2_#—;]0? 151110(51&29—}—(30520)1—

1 (f2 - 2K sin 6 — sin 20 — 2K sin 30 )/f, } ' (24)

where f =1 + 4K cosf > 4K2  and  fo =1 2K cos § — cos 20 — 2K cos 30,

Stresses in a c1rcu1ar plate and in a plate of the form of a card101d can be obtained, as particular cases, .
on substituting K=0 and K=1/2 respectively in equations (22) to (24). ‘

STRESS INTENSITY FACTOR

The distributions of stress-intensity factor S'= [5?0]@1 for. some particular- cases are studied

- (Fig. 2).
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Fig. 2—Variation of stress-intensity factor.

For K=1/2, the stress inténsity factor S, is given as :
F (1 cos8—cos20 1 cos 30 — 2 cos 9 cos 20

Slz\_g{ 1 cos§—cos20 —cosf cos 20 } (25)
The d1str1but1on of S is given in the following table
f(ﬁ) = — 617(;51/F
0 in degrees l 20 ’ 40 ‘ 60 80 - | 100 l 120 l 140 160
£(6) % 10 l 5.16 | 5.67 ] 6.67 | 8.52 ] 12.10 ] 20.00 I 42.70 | 165.80
For K=1/4, the stress intensity factor S, is as follows :
Gy _ AF (270086 — 200526 - Tcos 30 — 14 cosh cos 20 9
S 7G7r{ 5 -+ 4 cos 6 — 5cos 20 — 4 cos 8 cos 20 (26)
9(0) = — om(Sy[F')
6 in degrees , l 20 40 l 60 i 80 ’ 100 ‘ 120 l 140 ‘ 160
2(6) X 100 | | 13.0 | 14.1 ’ 16.3 | 20.1 ‘ 26.5 ’ 38.1 [ 59.0 ] 92.1
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DISCUSSION

(z) Equatxon (25) shows that Sl is mdetermmate at 0—0 and 0—~ 180" whete the concontrated ’
forces. act, The' hmltmg values of f (6)as 6-0° and §-+180° are 05 and infinity. At 8=180°,
* the cardioid has a cusp and the physical impossibility of infinite stress there is resolved by plastxc :
yleldlng of the material in. the small ne1ghbourhood of this pomt ' ‘

(if) Equation (26) shows that S, i ﬂindetermmate at'#=0 “and 0 = 180° " The li‘miting 'valuc of
- g(0) as o»o" and 6--180° are 00127 and "F.14 - respecnvely S mE ST
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