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The problem of a thin elastic plate in the form of Pascal's limacon under concentrated forces at the extremeties 
of its axis has been solved by using complex variable technique. The solution has been obtained in a closed 
form. Stress components have been found out. In particular, the solution of an elastic circular plate and that of 
a plate in the form of a cardioid have been discussed. The variation of stress-intensity factor has been 

- studied. 

Complex variable methods to solve two-dimksional boundary value problems in elasticity have 
been developed by Muskhelishivillil. Later on, these methods were exploited by various authors 2,3,4&5 
to solve variety of problems. Milne-Thomson4 has, however, used the method of analytic continuation 
across the boundary of the plate. Using this method he has solved the problem of an epitrochoidal oval under 
two standard concentrated forces at the ends of its 'major' axis. 

In the present paper, the same method has been employed to solve the problem of a thin isotropic elastic 
plate in the form of Pascal's limacon under two standard concentrated forces at the extremeties of its axis. 
The solution has been obtained in a closed form. Solutions for a circular plate and that for a plate in the form of 
a cardioid can be obtained as particular cases. 

F U N D A M E N T A L  F O R M U L A E  

The b-oundary of a thin homogeneous isotropic plate in the form of Pascal's limacon is assumed under the 
action of two standard concentrated loads at the ends of its axis. We denote the boundary of the plate by 
and the region inside and outside it by L1 and R1 respectively. 

' The transformation function 

maps the boundary of the limacon in the 2-plane on to a unit circle r in the &plane. The region inside and 
outside v are mapped on to those inside and outside r which are denoted by L and R respectively. 

Determination of two potential function W (E) and w (6) gives the complete Solution of the problem, 
h h  

Stress components rr, re and are given in term of these two potential functions as follows~, 

- -- - 
h h - - 4 m(f) Nl(4) F '! mf (0 - - 2 ( r r  + i r e )  = W(E) f W (t )  - - 

4 m'(6) I m' (8 (') (2) --- 
A n -+ F m ( 8  jp(ii+ 4'm1(t) ;(A . 

(2 88 -i Or = W(f) 3- W (5)+ --- 
f 4 4 )  f m' (I) (3) 

Following Milne-Thomson, we apply the continuation theorem for the circle to equation (2) to give 
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where o = eie, p(u) is the pressure, S(U) is th&hear and ~,4 ( f )  is continuous across r and its form iS 
obtained by considering the singularities of m' ( f )  W ( x i n  the region R. The analytic continuation in R of 

1 (2) is obtained by writing zero for + i 2 and- for f  as follows. 
5 

m' ( l)  W ( f )  = - 1 -  1 ($) r m a ( T )  ' ( f  ) (5) 
( f  in R) 

1 1 
Again, from (5),  by writing Tfor  and - for f  and taking the complex conjugate, we get 

5 

1 - -  
mt (n w ct) = m1 (+) [ W ~ C )  +. 7 (f )] - 2 (+) wt  ( f )  (6) 

( I in L) 

The function w ([)must be holomorphic in L. The equation (6) will be used to express the holomorphy condi- 
tion whihh wi~l enable us to find the unknown constants of $([) in (4). However, we can dispense with the 
function w ( 5 )  expressing stresses in terms of W (e) and its continuation in R. Taking the complbx conjugate -- 
of (6)and then eliminating w ( 5 )  from (2) and (3), we get 

1 1 1 
22 n1 ( f )  [ ~ + i 3 ] m t M ' ( t )  w.(o-- - m l  (f) w ( _ )  + 

E 
\ 

1 1 1 
+ [ f n t ( f ) +  - = - n t ( T ) ] . ~ J ) + [ m ( i ) - ~ ( 7 ) . ]  I 'g P (T) ( 7 )  

21 nt (11 [ a + i  - er .] = t m t ~ t )  W ( I )  + f ($) w ( + )  + 
I + [ o ~ ' ( O  - = m 1 f k ) ] ~ 3 +  [ r n ( 6 ) - - i  ($)T  C 72) 
I 

(8) 

The displacement components u and v, in a similar manner, are given by 

a 1 , 1 
4~ ( u + i v ) = i X ~ ~ t ( ~ ) ~ ( t ) + [ ~ ~ t  (?)  - r m t ( r ) ] i  tii (7i + 

I 
(9) 
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A ~ D  BE ALI : STRESSES rn AN ISOTROPIC ELASTIC PLATE 

S O L U T I O N  O F  T H E  P R O B L E M  

The transformation function (1) maps the limacon y in 2-plane on to a unit circle I' in &plane. The 
anti-clockwise sense of description of y is taken to be positive. As y is described in 2-plane in the positive 
sense, r-is also described in the same sense in &!-plane as shown in Fig. 1. 

r 

1 

Origin 
At 

3- plane 

2 - plane 

Fig. 1-Transformation of Pascal's Limacon on to a unit circle. 

P 

From (I), the parametric equation of the boundary y of the limacon are given as : 

x = c (COS e + K cos 20) (10) 
y = c (sin 8 + K sin 28) ( 1 1 )  

where the parameter 0 is the vectorial angle of any point on r. Points A andB on the contour y correspond to 
e = 0 and 8 =T. Let the distance c(1 +k) andc (I-k) of A and B from origin be denoted by a and b respecti- . 
vely. The whole boundary y of the limacon is unloaded except the two points A and B where standaw 
concentrated forces F and --F act to keep the plate in equilibrium. In infinitely small neighbourhood of 
these points, the stresses are unbounded.  physical!^ this difficulty is resolved by plastic yielding. This being 
in a very small region near these points, we think these forces to be applied as distribution of stress over 
small areas round A and B instead of being concentrated at these points. Let e be infinesimal and we take two 
points Al, A,; B,, B, onthelimacon given by 

z ~ x = a ( l - ~ ) , Z ~ e = a ( l + ~ )  

Z ~ ,  = b( 1 - b ) , =B, = - 
1 

b ( l + i ) l  (12) 

The standard concentrated forces F will be obtained as the limit when E+O of a unifom stress distribution 
given as 

P - p(0) f i s (a )  = - on arcTAl A Az 2aa 1 
and 

The form of the unknown 4 ( 5 )  in (4) is obtained by considering the singularities of m'(6) W(6) in R. Since 
R, contains the point a and m ( 8  = C (5 Kt2) has a pole of order two at P = m, it follows that rn'(f) 
W (0 will have a pole there of order one at most. Hence, we can write 

* ( f )  = A3 + &;if (14) 
where As and B3 are unknown constants. The equation (4) reduces to 

1 P c ( l +  2ku) F c ( l f 2 K o )  
do +A3 +B,t 

AIAA, BlBB, 
which theh reduces to 



I 
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Since on the contour y, dz = it-a on going from A to A, and dz = it-b on going from B to B, ,thus to the first 
order we have 

%€a 
do = c( 14-2K) = f I (B), say, on going from u~ = 1 to *A, 

ie6 
and d o = (I + 2Kj =f' (E), say, on going from a~ = - 1 to  u ~ 2  , 

Therefore 

a A, = 1 -fl k), OA, = 1 S ~ I ( E )  

a 
B, = - 1 f f2 (E), a ~ a  = - 1 - f g  (a) 

Equation (15) using the logarithmic series in the form I,(l-+pe) =pc, reduces to 

The unknown constants A,  and B, will be found using the holomorphy condition of the function w ( 0  given 
by (6). By Laurent's expansion, the function w(E) can be expressed as 

where 0, = 2KA3 + B3 4- 4K.8'1~ 
Dz = 2(1- 3K2 ) A3 - KB3 + 2 (1 -- 6K2 ) F/* 

G 

Dl = 4K (3K2 - 1) A, $ 2K2 B, + 4 K  (6K2 - 1) PIT 

and g(f) is holomorphic in L. Since w(t) is to be holomorphic in L, we must have 

Dl = D2 = D3 = 0 (20) 
Equations (20) form a system of three simultaneous equations in two unknown quantities A, and B,. The 
equations are consistent since the determinant of the coefficients of A, and B, vanishes. Solving, we get 

Since the boundary is unloaded, equation (17) gives W(S) for E in L and for 6 in R. For K = 0, the 
solution agrees with the known solution for a circular plate. For K -  112, the limacon of Pascal becomes a 
cardioid. In this case though m' (6) = 0 at E = - 1, no contradiction with the general theory arises 
since in the case of the cardioid the boundary has a cuspl. 

E X P R E S S I O N S  F O R  S T R E S S E S  

Components of stresses can be easily found from the equations (2) and (3). However, the expressions 
for stresses on the boundary r = 1 are given as follows. 



KF c0sec2 19 ( sin 8 ( siq 28 + cos 28 ) and r8 = 
, 277 c f 1  

+ ( f 2  + 2h. sing-sin 2 8 -  2K sin 3 8 ) l f i )  (24) 

where fi = 1 + 4K cos 8 -jl 4K2 and f2 = 1 + 2K oos 8 - cos 28 - 2K oos 38. 

Stresses in a circular plate and in a plate of the form of a cardioid can be obtained, as particular cases, 
on substituting K=O and K= 112 respectively in equations (22) to (24). 

S T R E S S  I N T E N S I T Y  F A C T O R  

The distributions of stress-intensity factor S= [G]T=~ for . some particular cases are studied 

- 
For K- 114, the stress intensity factor Sz is as follows : 
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