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This paper investigates the propagation of torsional wave in a non-homogeneous composite cylindrical ~shell
characterised by an aeolotropic material in the region r, < r < r, and visco-elastic material representing a parallel
union of Kelvin and Maxwell bodies inthe region r, <r < r; The non-homogeneity of the shell is due to the
variable elastic constants Cyj, variable density p and variable shear modulus p. Lastly, frequency equation and
phase velocity of the wave have been calculated. The perturbation equations of the field and the torsional vibration
of aeolotropic as well as visco-elastic shell have also been investigated.

The investigations relating to the combined effect of mechanical and electromagnetic fields in elastic
and visco-elastic materials have received an impetus in recent years due to their extensive applications in
“various branches of science and technology, particularly in plasmatrons and aeromagnetic flutter. The signi-
ficance of these investigations, derived chiefly from the behaviour of seismic wave propagation, has a
reasonable bearing on many seismological problems, particularly in the detection of mechanical explosions
in the interior of the earth and in radiation of electromagnetic energy into vacuum adjacent to magnetoelastic
bodies. Such problems have been discussed in a series of papers by Kaliski!’?, Sinha3, Giri?, Yadava?,
Narain & Verma?®, Narain?, and many others. As a sequal to these, the present paper is an attempt to discuss
the torsional vibration of a non-homogeneous composite cylindrical shell subjected to a magnetic field.
The non-homogeneity of the shell is due to the variable elastic constants ¢;; (7, j=1,2,....6), variable
density p and variable shear modulus w.

PROBLEM, FUNDAMENTAL EQUATIONS AND BOUNDARY CONDITIONS

We consider a perfectly conducting non-homogeneous cylindrical shell characterized by an aeolotropic
material in the region r; < r < ry and visco-elastic material representing a parallel union of Kelvin and
Mazxwell bodies in the region 7,< r < r3. The boundary of the shell is supposed to be mechanically stress free.
We assume that the shell is placed in vacuum and initially there exists an axial magnetic field of intensity H.
Since the problem considered is of magnetoelasticity, we consider the expressions connecting the component
of stress and strain; the constitutive relations of material together with magnetoelastic equations supp-
lemented by electro-magnetic equations of Maxwell. The constitutive relations of the aeolotropic bodies
in the cylindrical coordinates (r,6,2) as in Love® are given by ‘

Orr = Cyy € C1p €9 T Cig 2 ']
O g == Cpy € + Cap €gg T Cag €z
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Or; = Cgq Cry .
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org = Ceg Orp J
where oy, ogg, -... etc and e,r, €gg, oot etc are components of stress and strain respectively and

¢i; (i, j==1, 2..6) are elastic constants. Assuming that the temperature remains constant the stress-strain
relation for visco-elastic solid under consideration as in Nowacki® is
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where )
. 1 : ’
84 = 055 — 3 $6;; (s = 3ke) : 1
| ' ‘ (3)
1
Gj =ej—gely (e=em) J

are deviatoric components of stress and strain tensors o;; and ;55 A, u are Lame’s constants; K=A4 = u
7 3

is the bulk modulus, m; m, are visco-elastic moduli and §;; is Kronecker’s delta. The strain displacement
relation is,

ey =g g Uy, 4
and the stress equation of motion is
2%
ot

Maxwell’s equations governing the electromagnetic field in the body and the electromagnetic field equations-
in vacuum are similar to that given in the paper of Narain’. Since we are considering torsional vibration,
displacement vector # has only v as its non-vanishing component which is independent of 8. Thus

oisj +(J X B);,= p (5)

Up = thy = 0 1 .
6
Ug =1V j ] ‘ ()

- and the magnetic intensity H has the components
e (M
Hy, = H  (constant) g

Using equations (1) and (6) the only non-vanishing stress equation of motion (5) for. aeolotropic material of
the shell comes out to be : :

3%, 1 av 9 % HP oy,
666{—372_ + o T 055 92 dr 2 +
4 RPN (8 IO VO W |
2w (B-%) =% o ®

and using equations (2), (3), (4), and (5) the non-vanishing stress equation of motion for visco-elastic material
of the shell comes out to be

2 2y 1 w ¥ 3%
s(14m 5 ) {4 B-a+ T )+

roor 22
f 2) (2% _w) 2\ (B 2% e%)_
+ "(H'm2 at) (ar _'r) dr f—(ler‘?rf)(ffnazz tTrgg)=0 O

For harmonic torsional vibration we seek the solutions of. the form , ;
v; = Fj (r) eile+p) (j=1,2) "‘ (10)

and consequently the equations (8) & (9) take the follbwing forms

#F, 1dF, Fi 1 Hg |
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1 4 dF, Fi\ _
toww @ (T =0 ay
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and -
@F, 1 dFy (14 mip) HY 2 (1fmeip)
art Trw +"{M(1~+mz?5p) dm + ff("lff-mzip)”p
sz Fg 1 dﬂ ‘
~ 4R <r)+( 2) i =0 . (12)
The electromagnetlc field equations in vacuum take the fo]lowmg forms
dzh*, 1 dn :
W - 0‘+w2h0*=0 , , (13)
and : o v |
" @E*, 1 dE ‘
d¢20 ) g 2 E*o =0 (14)
where
et =gpr— ¢

If tHe expression for the material in the region r; < r < r, be denoted by the suffix 1 and for thatin the
region ry < r < rg'by the suffix 2 then the boundary conditions on the surface are

C(omdit (Dg hi— (I% h=0omr=n |\ -
( O'rr)2’: + ( Ty )2—'( T*y ) =06hr =17y

and the continuity of the stress displacement and Maxwelhan tensor in the shell on the surface r= r2 when
. formulated are ‘ ‘

(”)1 = (”)2 011 r= 7’2 ']
( o9 )1 = (org )2 onr =1, L : (16)
(T )1/=,( Tre ) on 7 ='r‘2~ J

where T,y and T*,4 are Maxwell tensors in the shell and vacuum respectively.

METHOD OF SOLUTION

We suppose that the elastic constants ¢;;, denSity p and the shear modulus p of the shell vary as

i_”'z,; 1 ’
p——porz - (d,j:vl,?,.....6) o : (1
po==mﬂ“2 J

where p;j, po and p, are constants and r is the radius vector. The solutions of the equations (1 1) and (12) with V
help of (17)are given by (c.f. Narain”).

) ; . ; ‘ | ik
o = {AlJvl()‘ﬂ‘)'i‘Bth (A7) j¢ (18a)
and | - v |
1 - o : (% + pt) ; .
vy = - { Ay Jv, (A )+ By Yo (Agr ) } e v (18b)
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and Al, Bi, Ay, B, are constants and Jv;, Jv, and le,

sz are ‘Béssel functions of first
, respectwely Usmg the recurrence formulae o E L

N
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| [(1+m1 gg ) O J - o ( 1+ mz a?fp) [Az{hgr Jy,_l ()\21- )../_
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forr, <r <

Since Ty, = T*,, =0, the boundary conditions (15) and (16) yield

}

Yv? ( ?‘171 )} = 0
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4, { Neralvy1 ( Xgra ) — ( 1\2:)2 +2) dyy (s ) } +
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Thus we have four ljﬁear;equations (23)to (26) to determine four constants 4;, B, 4, B, in forms of _
material constants of the problem. Eliminating these constants from (23) to (26) the frequency equation is ~ -

-obtained as

Invt’rod'uc':ing the wave lénght A= 2?” and the phase velbcity ¢ =

r
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of the torsional wave inside the shell

B o~ B

we can determine ¢, from‘equatién

4
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where / g B
‘ wi 2‘;* ]
is the wave number. For perfectly elastic material ps5 = pes = o and hence from (31), we have
. o . 2 : 1/2 . ‘, ! : g N -
c*:./— {-;:—2— +1} SR ; L (32)
We use the following fesults of Watson‘ﬁ to find the value for small values ofx - R | '
lim J () =~ 2» and InY, (#) ov — if w570 ' SRR - (33)
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As a consequence of tﬁe result (33) the equation (29) takes the form
.[""' { QVz‘f()‘zvz‘i"z) J} T { 2% & — (Ag va + 2) }] - Mege
g , . o |
v i Wy — (A vy —i— 2) E—(Mv +2) J} — 1" 2y — (M vy 2)
N
{?252__()‘1 vy + 2) j] 2{ vy — (Agve + 2) } o (1 4 my tp) [1'—-1'3
{wﬁw()\m +2) } T e — (et D) e ] [r { £ —(w +,2)}—

—,—-f—';x { 2wy — (A vy —[— 2) } ] , : | (34)

If there were no magnetic field, i.e. H=0 then from equation (19) we have v;=v,= 2 and hence the equation
(34) becomes : '

( o 11 )
[« {rmw} - {mesnin ][ {r0-n }
I"Az) F'o(1+m'2':?)x

{§2~2(z\1+2)}—2(1—h1){ réngz(;\1+1') }]= 2 o
X [_{w22§2——2()«2+1)}+ {w21§2~—2(/\2—|—1)} ! ][w {gz-z()\1+2)}f—

1
“—{2(1-1\1)}]. SR L @)

NUMERICAL RESULTS

!

For r=2 the équation (35) takes the form : ‘
[ 32(1—Az)~—{¢2262—-2(1\2 +1) }] [32(1"f)‘2) {52——2(,\1+2), }— L

_2(1—)«1){ 452——’2()\1—}—2) }] =2(1-——Aé)]c [.{¢2;§?—2(A2+ 1)}_;_.

I { o% &2 9 ().;+ 1) } ] [ 16 { 52__,2‘(;\1 + 2) } 2 kl —Al)] (36)

where

Po (1 -+ my ip)
i Hes . 7 ‘
Taking A, = 1.3, A;=1.6 and k=1, we get £2 = 1.58 and' —0.33 approximately. Thus for one set of
values of A;, X2, k and r we get four values of ¢ corresponding to four modes of vibration. From equation
(32) we can obtain different values of ¢* for different wave numbers. -

SOLUTION OF THE PERTURBATION FIELD EQUATIONS

The electromagnetic field equations are solved under the boundary conditions

E=FJ'*Onr=r1and‘E=‘ﬁon¢=?’3  , ‘(37)
and | | |
. :
dh ¢ dE o
5 - TE;*Oﬂr:rl ‘andf=9'3 ‘ (38)
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and also the radiation condition as » > ®. As given by Narain’ ’ '

‘ H dv , : .

E’=,[——~C—dt,0,0] | : (39)

e [”’7;’0.] o o | W

and the solutlon of the equatlon (13) and (14) are taken so as to satisfy the radlatxon condmon in the form.
Chy* = CH® (wr) for r > 14 :

 =DHD (w) forr <r, (41)
By = O H® (r) for r > 7, 7
= D1Ho(1) (fr) forr < ry

where Hy, Hy®) are Hankel functions of zero order and of first and second kind. C, D, C;, D1 are constants.
The boundary condition (37) with (42) gives !

' H {Al JV] (Ai 7'1) + B1 YV]_ (Al 'I‘l)}

(42)

kS L Dl = 1;0/'.1 | H (1) (w7‘1) | -. o (43&)
H’ 1 N N ’ -
0= g { Aa T a7 + B Ty () J\ S | (43h)

The boundary condition (38) with the help of (41) and (42) glves ;
H’Lq {Al JVI (Al 7‘1) + B]_ YV]_ (Al 71) }

D = 7‘21’. B - H i) (wﬁ) (44:3:)
and » ,
i | ' . .
C = ,,.2%q' { Ay Jvg (Mg 15) -+ By Yuy (Ay75) }/Hu(z) (wrg) . : (44b)
3 . PR
Hence, the perturbed fields are given by
L Hp {Al JV]_ ()\1 ’I‘l) + Bl YV]_ (Al 7‘1)} ‘ . :
B = wrl - H (wry) H,D) (wr) eflez + vpt) : » (45?)
‘ ‘ : for r < . S
e Hp {4 dvs (A1) + BYyy (A "'3) Yoo e ;
,‘E* = Tier, H® (ary) ~ Hy® (wr) ?’(q"+ P (45b)
‘ for r > 74 k
: H”Q {A1 Iy (A7) + B] Yy (4 ) } 1 . o o
B = % Hy® (ery) ‘ H® (or) ez(?z-{_pt) . (46a)
‘ forr < Fy ' B
. B Hig {A’z Jﬁz(}\zfs)‘FB;Yfg (Aers) }\Ho(z) (Q¢)ei(qz+?t) - . (46b) ,b
; =R, H & (wrs)

'for'r>¢3

TORSIONAL VIBRATION OF SNI-?El.\ILI-II,OMOGENEOUS AEOLOTROPIC

Suppose r=R; and r—R2 bethe boundaries of the aeolotropic shell- which separates the solid from
vacuum. In this case the boundary conditions are cro—() onr=Ry and r_._RZ hence

[ MRt (4B — O +2) Ty (4R } +

By { BTt Ouf) - Ot 2) Ty (4F) | =0 )
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and h o ,
A]_ { AleJvl—]_ (A]_Rz) el ()\1V1+2) JV]_ (Ale) } _['
+ B1 : A]_RzYVl—-l (/\le) —_— (A1V1+2) YV]_ (A1R2) } — . ) E ' . (48)
4 Ellmlnatmg 4,, B, from (48), we get the frequency equatlon as |

l MBIyt (MBy) — (Apy+2) Jvy (AR } { MRzYVr ()‘1R2) + (e + 2) Yoy (A By) } —

_{ AR MRD)—(Ovs+2) Yry(MBy) }‘x{,\leJvl_i (B —(pr+2) Tvy (4R } =0 @)

The. phase velocity ¢ = s of the torsional waves are given' by .‘

L B ”'66 . ( )2;[;"11'55 }1} S . - 8 . L ‘
Oy = &, 155 o 50)
) ? ( Po ) { 277'R e s ‘ o o ( )
where £, is a root of the equation : R - - ) R

{ E1Jvi-1 (8) — (AMvy + 2) Jn 51 j’ { -’7051 YV1— 1 (2 fl) ' f\

O ) Vo (ot } { Pt (6) — Oy +2) Yo (fl)}

. { T 51 JVl (xfl) - (Al V1 + 2) JVl (wfl) } =0 R (51) ‘
where . ' | 7
Ry ., B
r = —Ei— and & =) R, _ , . (52)
" For pure elastic solids pg55 = pgg =po and hence - '
i ” e {a ( A )2 112
: ey = |2 1 - (53
2 Po L 5 1 2” Rl . -l_ }' \‘ v ( 4 )
TORSIONAL VIBRATION OFs,lfl%I}I_l-EE)MOGENEOUS VISCO-ELASTIC
Letr = R’y and r = R'; be the boundaries of the visco-elastié shell then proceeding exactly similar
to the previous case of acolotropic shell we can find the phase velocity ¢3 = % of the torsional waves as
po (1 + myep) 3 { . ( }1}' ’
= 1 54
o= {nitma P e (a) 0} o

where &, is the root of the equation

{ é> J"z_l (é2) — ()‘2 vy <+ 2) Jvy (€2) } ‘{ ¥’ £ YVz—l (@ &) +

+ (Ay 73 + 2) Yv, o 'fz) } { £, sz-l (fz) — (Agvp + 2) Y"z (52) } .

. {m 3 Ivp1 (2" §5) — (Agvp + 2) JVz =’ 52) j =0 o (58)
Where’ w, = __Ri;Z_ and fz = Az R']_ ‘ ‘ B (56)
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For Kelvm Vo:gt soldx, we have m1 = &«a,pd hence

ey = { ﬁﬁ_ﬂi’@ﬂ} {-z 2

Po

;(“‘ﬁ) “f

"' For pure elasuc solids we haVe m2 == 0 and hencc St

I - N .u.",,:h WoN

b
.°
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