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The investigation deals with the effect of an embedded flaw—a penny-shaped craek in an elastic half-space subjected to
torsional deformation. The problem is reduced to a system of Fredholm integral equa,tlons Graphical display of the
results are included.

The study of the torsional oscillations of an elastic solid is important in several fields, e.g., soil mecha-
nics!, mechanieal transmission line theory? and transmission of power through shafts with flange at the
end as integral part of the shaft. The oscillations of the half-space, excited by a rigidly attached circular
dise, were first considered by Sagoci® and an approximate treatment of both the oscillating half-space and
stratum was subsequently given by Bycroft®. Recently, Collins® has formulated exactly both the problems -
as Fredholm integral equations of the second kind, utilizing methods developed by h1m6 in scalar diffraction
theory.

The purpose of this paper is to investigate the effect of an embedded flaw in the form of a penny-shaped
crack in an elastic half-space subjected to torsional oscillation. By following the fairly well-knowri procedure?,
the problem is reduced to a Fredholn integral equation. Attention is also drawn to the calculation of the
ration M/M,, where M, is the moment required to produce the rotation when the half-space contains ro
flaw. In addition, the shear-stress boundary value is  considered along with other quantities of interest to
such problems. Numerical results have been illustrated graphically.

FORMULATION OF THE PROBLEM

Let us consider an elastic half-space occupying the region z:>—*h, whose boundary z=—F% is stress
free, except for the circular portion 0<r<<b to which is'cemented a rigid circular shaft of radius ‘4’. It is
supposed that a penny-shaped crack is present in the region 0<r<a, #2==0 whose faces are stress-
free. Further, it is considered that a twisting moment of magnitude M is apphed to the shaft causing it to
rotate through an angle «.

It can be easﬂy shown that, if we use cyhndencal co~0rd1nates (r, (' z), the dlsplacement vector has only
one non-vanishing component Ug (7, z), and the stress tensor has only two non-vanishing components
Yrg (7,2)and Yoz (7, 2z ). The stress-strain relations reduce to two simple equations

-} -1

Yo =,u¢;r-(rUa), « (1)
al : ot

Yo =p 2, @)

where p is shear modulus of the material. Since the problem is ax1symmetnc the dlsplacement vector U
must satisfy :

#Us , 1 aUs Us , We
@ T T T e 2 0 @)
The boundary conditions can be written in the form :
Ug (r,—h)=ar, 0Lrgbd o 4)
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| Yoz‘(% 0 ) = Yoz(‘r, 0/) eg<r<w o @)
~ Now (6) ari‘d' (8) éhow that » | A ‘

: : SOLUTION OF THE PROBLEM
Let us take the solutmn of (3) as: :

\ [Acoshfz-|—quh§z}J1(fr)d§,~' i —’—k<‘z;<‘0'k (10)

f ce Jl(sr)de 0<z<e o an

~ where 4, B and C are functions of ¢’ and are . to be determmed from “the boundary cond1t1ons and
' contmulty conditions just stated. :

- From (9) and (11), it follows that Ty S R |
S O(e)=—B(¢) (12)
N ow 1mposmg the remalmng boundary condltlons we see ‘bhat A ( ¢ ) a,nd B ( £ ) satisfy

\ [ A(f) cosh (57)) — B (5) smh (Fk) ] J1 (ef'r) d§ =ar,0< r<b, (13)

j:e[A(s)sxnh(ek)——B(f)cosh @A dE=0b<r<w, (04
FeB@n(ma=0, o<r<e oy
‘F’«[A(f)+B(£>]’J‘;(‘5r>ds=b, s<r<m (18
REDUCTION OF THE PROBLEM TO FREDHOLM Iﬁ;‘T\E»GRAL EQUATION\S
Letthetrmlso]utwnbe ARy ST " , . e )
1 A(f) sinh (fh)-B(§) cosh (fk)~\m(t)sm gt dt, : (17)
- » - 9 ! 1‘ e
o A@B@-= fn(t)(i‘i‘g,—i‘—?cds‘ efa as
2 e : ish . ’
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. With thls choice of the unknown functlons we see tha,t equa,twns (14) a,nd 16) are satlsﬁed Now solving
(17) and (18) for A and B : :

woget i S ,
47"'("5);.——, e"gkf m (f)sin g dt + 6" cosh (£h) f 0 ('Sir;ft — _c,o,éﬂ’g*t;) dt, | a9
i 0 | o |
i 1;(5)% fmwsm ftdt+ - sinh (fk)fn(t)( ft_*cosc*t)(d? e
| vBy*!nserfmg these values of 4 and Bin (13), we get R |
f [ fm @sinetds + [o (t)( L8 e g )it | 7uende —am o<
0 e R ,
Changing the order of integration and using 1 the results e BT
Of‘Jl(m sin;tds,_ ’%‘r—’——-_z’ Jen i
J1 (Er) = % 0 Vm——;m_if i
we get : L | f ,
J\/g <[ m (t)+—-fn(tf gh( SR o) dt] dx:o;ﬂ(og?rgb) @)
w]nch is an Abel type of equa,tlon whose solutlon is - | | | ’ |
| ,m(x)+fK<w,t>n(t)dt~—m (o=azt) . @
where v , | S V : | e :
K(wat)%%ﬁ*fh ; si‘n'j éw (Si—%zg—\tecos/ft ) a . (23)

0

The 1ntegra.l can be evaluated in closed form to glve

1 B (s 41 1 st w—t ]

Eeh= gr 8 m @iy~ 7 | By of T Fi(a—ip

in which the smgula,nty at =0 is illusory. That K{(x, ) is continuous forall z and ¢ follows from the ea.sﬂy
established uniform convergence of its defining integral for all @, 1. In fact K (x, 0)=0.

(24)

Now mtegra.tmg by pa.rts the second part of (20), we get

2§B(§) f { n (@) —l—n(t)} sin §tdt—-n (a) sin éa —
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— 2& \ I : ,t) ( - ft . gt)dt__ e

- 2 - fhf m (t) sin ft dt WA o (28)
Puttmg this in (15), a,nd mterchangmg the order of 1ntegra.t10n and makmg use of the relatlon
tH (t—r)
J‘Jlkw) sin ft d§ = m
e C 2 fwsinéx o0
= ‘Jl (ff) = ,—_——«\/——rz—-xz» RER "i'g?f?

' "we eBi:ain the Abelv‘equation‘ | o
| f\/fz [dy{y (y)l—k—f (t)dtff & g sin fryy-‘

(elr;Tét —f cos & ) d¢ — ;—f m (t) dtff ef_fh y’f.'sin (fy) sin (£1) df] dyf—(0§r<a)‘ : (26)
‘01;1 1;;nteg’rsn,tlng with respect to y from 0to @, Wlthx in mterval (o, a) and then dividing by », we fmally
obtain ,

"n(a:)-——lL(wt)nt)dt-2!K(tw)m(t)dt0<w<a" B "'T;\w(z‘f»-‘-)

where K (t, x) as the notation 1mp11es the result of interchanging = and tin'K (a, t) given by (23) and:[:

o tea=Z f 2 f"(s“}f’” "cose ) (;S";tftscos ft>df (28)

Th1s mtegral whlch is also umformly convergent for all & and ¢, can likewise be evaluated
in closed form. Hence the kernel L is continuous and is given by .
T 2h n e L AR (o B
o L‘w"’=7[4h2+<x+m+ TP E—p 2 I (- o
Since angle o is not given, we must add to the equations (22) and (30) the ‘equation which expresses
the fact that the external moment applied to the shaft is M. Tt is eas11y seen that the moment

exerted on the shaft by the half—space s
b

2@]72 YOz( r,‘—~k)ldr ‘ - ‘ (30) 
0 ‘, ' .

(29)

,(‘

the integrand of Whlch can be expressed in terms of m (t), and then equlhbrmm of the shaft requlres tha,t

ftm(t)dt—f e

T (z‘
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QUANTITIES OF PHYSICAL INTEREST

~ We now compute some quant1t1es whmh are of great 1mportance ‘

C

Sheamng Stress at 2= —h

,' . To compute the boundary value of Yz (r, — A) for 0 r < b put the va.lue of Ua from (11)
in (2) to get, ,

Yoz(r,-—h)~ﬂ f [—‘ s)mnh(ghwﬂ(f) cosh (£h)]§J1 () de

which on Substltutmg from (17 ) and usmg the relatlon . J (m

fm(t)dth (fr)sln§td§ ey

If we use SR S eE T e : o - ‘
o fo,mr | Kl
t dé = . A g
! o (é7) sin § ¢ ‘l.(tz rz), i>e e L (33) i

- 'a,nd perform the indicated dlﬂ'erentlatmn, we obtam B "

; [ bma 1 tmiyd 7

”f"ﬁ’f’*—“[*ﬁﬁ“ v “ﬁ%?] At i o

It is not dﬂﬁcult to show from (34) that Vg, (r,— h)is 0 (») as r > 0 and that the mtegral

. remains bounded as r — b. Hence we get square roob smgulanty atr =b; a,nd the constant m (b) or
“its eqmvalent m (1) from (40), is a measure of the sbrength of the smgularlty at the rim of the shaft

Shearing Stress at z = 0 : , , ‘
To compute Yoz ( r,0)forr > a we ﬁfsﬁ note f;om 62) and (11) that

| Yon (1,0) = u f EB@IdE (%)
Now using (20), jwé,' Obtam
Yoz(rO)=—% ;”2(“) | f{ "0 | }dtf.f1 (&) simgrdg —

a

~—% an(t)fge Jl(f) (sm ¢ — oos gz)é§~yfm(t) dt .

% '—2}; s e ,
.fge ésin &t (%g—‘r-—cosfr)df.,~
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where

r) %pf{

X - —2¢ sn g o
. f,g J1 (f)( T — oos ff
b

—l—n (t))}dt f Jt(fﬁ; . f——% :» f nl). |

o1

e y.f m ( dtf §e ’ “sin §t (sn;f L-cos f'r)df

nw“It can be easﬂy shown tha, the e

o ;bounded as T >a. We conclude ag before that n (a) is'a
measure of the strength‘ R

: th ‘penphery of the crack

o The torque M Whlch must be apphed to produc
equa,tlon e s

: T:— 2 'nf ” ¥ ('r —h Ydr e T ey
S ’ L0 ’ B e
o On substltutmg from (2) a:nd (11) and makmg use of the result

L : : . wM,b N e
| f . th(é’f) dr = 3 Jz (bf)

'. ; I S, N .
R AT : LA

‘:We‘jﬁlll‘d:fhaf“ i

AR P i R S S A : T
CT=2mpl? f [4(¢) sin éh — B (¢) cosh ¢h] J, (¢b) dé~
i , 0 L e T

C=27pb {m(t)dt | sin ¢ Jy (£b) dé

R . : < ‘ . i‘i‘ . 0’ '. :., 0 ] s . X L
[y @as= o <icn) -

 we obtain" the equation S e s :

| ‘T=4vr \Hf‘-t m(‘t)"’dt,ff P

NUMERIGAL RESULTS

‘ For numemcal purposes it is convement to wrlte the system (22) (27) and (29) in the dlmenmonless :
form. Hence if we set : :

m (bu) T (au)

¢() e ad v “ e  '<40>
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¢

$ - (B(uv) (0)dv =, Ogusl o R R

S 1 | 1 , : —_———
’z/z.(u)~,—-fS(u,v‘)zﬁl(v)dv—fT(u,v)gﬁ(v)dv:O,» ogugl (42)' 
o0 DR A R C e

with : ‘
R(uv) =5 K( bu,av) .
S(w) —a L (mw)
oENRSTL - .'” 2 62 : ’ PR H

o T = K (boau) v
The kernels R, ST"anbeertten n éxplicit form a5 : .. L Y
Lo S S [ ] @
2”By[4y2 - e +4y2+ ,312@ 5 «ﬂ% log:::i g: EZ iff);

o= e R - Sl e ] @

S(y;v) = w

B
B = gady = 3

The nurherical treatmeént of the system which governs the problem was the usual one i.e. the system

was approximated by sets of linear equations. The basic interval (0, 1) was first partitioned into 10 equal

sub-intervals and that the trapezoidal rulé was used in the treatment of the integrals. The linear equations -

were ‘solved for the ten functional values each of ¢ (¢) and ¢ (¢) for ¢==0-1,......... e e i

1-0[ @ (0) = Y (0) = 0 is obvious from the integral equations themselves.] . .. ot

The relation

1 : 1:07
3 f t ¢ (t)dt = el : :
M, - SRR [
0 R O 99
which is present in the system, was not used in, the solu- - -
tion ; instead, it was used to evaluate the ratio M/M; - 081
after the functional values of ¢ were obtained. e
To assess the acouracy of the solutions, the cal- 7
culations were repeated using 20 sub-intervals and
Simpson’s rule. . The second set of results was o
practically  indistinguishable from the first. The
results in question are shown in Figs. 1—3 which
respectively show the variations of ¢ (1), ¢ (1), o o
M/M,, for y=0-2,0-45, 0-75 and 1-0. 705 fo 1S 2.0 25 30 35 40
- § ' . bla ‘ o
- : - Fig. 1—Effect of flaw on applied torque,
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