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The investigation deals with the effect of an embedded flaw-a penny-shaped crack in an elastic half-space subjected to 
torsional deformation. The problem is reduced to a system, of Fredholm integral equations. Graphical display af the 
results are included. 

The study of the torsional oscillations of an elastic solid is important in several &Ida, e.g., soil mecha- 
nicsl, mechanical ,transmission line theory2 and traamission of power through shafts with flange at  the 
end as integral part of the shaft. The oscillations of the half-space, excited by a rigidly attached circular 
disc, were first considered by XagociS and an approximate treatment of both the oscillating half-spqce and 
stratuq was subseqnently given by Bycroft4. Recently, Collins5 has formulated exactly both the problems 
as Fredholm integral equations of the second kind, utilizing methods developed by him6 in scalar diffraction 
theory. 

The purpose of this paper is to investigate the effect of an embedded flaw in the form of a penny-shaped 
crack in an elastic half-space subjected to torsional oscillation. By following the fairly well-known procedure7, 
the problem is reduced to a Fredholm integral equation. Attention is also drawn to the calcplation of the 
ration IMIM,.,, where M,, is the moment required to produce the rotation when the half-space contains no 
flaw. In addition, the shear-stress boundary value is considered along with other quantities of int'erest to 
such problems. Numerical results have been illustrated graphically. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  
. , 

Let us consider an elastic half-space occupying the region z.>-h, whose boundary z=-h is stress 
free, except for the circular portion O<r<b to which isacemented a rigid circular shaft of radius 'by. It is 
supposed that a penny-shaped crack is present in the region O<r<a, z=0 whose faces are stress- 
free. Further, it is considered that a twisting moment of magnitude M is applied to the shaft causing it to 
rotate through an angle a. 

It can be easily shown that, if we use cylinderical co-ordinates (r, 9, z), the displacement vector has only 
one nonlvanishing component U e  (r, z), and the stress tensor has only two non-vanishing'components 
Y,e ( r, z) and Ygz ( r, z ). The stress-strain relations reduce to two simple equations 

where p is shear modulus of the material. Since the problem is axisymmetric, the di@lace&ent vector U 
must satisfy 

The boundary conditions can be k i t t en  in the form 





, 
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With this choice of the unknown functions, we see that equations (14) and (16) are satisfied. Now solving 
(17) and (18) for A a ~ d  B,- 

w P, get 
6 .  a - 

sin ft A ( k )  = e-'' Jm ( t )  sin p at + e-'h cosh ( f I , )  Jn ( t )  (---- - 098 f t  
St (19) 

0 0 

and 
b 0 

1 

sin 8t B (8 = -e-'h Jm ( t )  sin s at + e4', ~ i n h  ( ~ 1 %  t ( -  0 s  ft - (20) 
0 0 

By,&serting these values of A and B in (13), we get 
a f [ j m  ( t )  sin f t  at + e " In (n (%- Et c o s t t ) a t ]  Jl(f!)ddr=avs 0 g v g b  

0 0 0 , 

Changing the order of integration and using the results 

t H ( v - t )  .. 
J~ (P) sin St clt = 

r p - - t 2  ' 
0 

s a i n t  x 
J l ( 5 r )  = ,, 

we get - 
r a 00 

m 2 sin t t  
J=[m(t)+;Jn(t)/c-~hsin~(T-m~td~dtdx=ar2(~gv<~) ,/r%+a (21) 

0 0 0 1 
which is an Abel type of? equation whose solution is 

a 
Pa 

m ( x ) + S g ( z , t )  n ( t ) d t  =- n x , ( ~ g r n g b )  (22) 
0 

\ 
where 

BO 

2 ~ ( % , t )  =T/~-'h ,in 2% 008 B ) at (23) 
0 

The integral oan be evaluated in closed form to give 
h s + ( ~ + t ) ~  1 - -  m - t  

in which the singularity a t  t = O  is illusory. That R(x, t )  is continuous for all x and t follows from the easily 
established uniform convergence of its defining integral for all x, t. In fact E (x, 0 )  =0. 

Now integrating by parts the second part of (20), we get 
0 

a 6 B ( 6 )  = J { + n r ( t ) }  s i ~  {t at - n (a) sin <a - 
0 
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a 
4 .  

- e 00s R ) dt - , % 

0 
I 

b 

- 2 6  e'2 a j m ( t )  sin 8 a t .  (25) 
0 

Putting this in (\15), and interchanging the order of integration and making use of the relation 

4 t H ( t - r ) !  
J1 (SY) sin St d5 = 

r 1 / r 2 - t 2  ' . 
0 , 

9' 
'I 

x sin f z . 
'1 

0 

we obtain the Abel equation, 
z a 

1 d ( y n ( y ) ? - -  a jn(t)litf'6-2& S ,-, [s  y sin f y . 
n 

0 0 
. 

. o  

sin 5t (T - cos 6% e-'h yf .  sin (Ey) sin ( f t )  t)S ] dy (Osr<a) (26) 
0 0 

On integrating with respect to y from 0 to x, with x in interval (0, a) and then dividing by 3, we 
obtain 

1 f a  a b 
n (5) - I L (x, t )  n (t) dt = 2 2 1 (t, X )  m ( t )  dt, 0 < x < a 

0 0 
-, (47) 

where K (t, x) as the notation implies the result of interchanging x and t in K (a, t )  given by (23) aid  ' 

Q) 

,( '. 
1 ,Lp,o= n (9- t2os 6%)  ( y -cog St  ) a8 (28) 

0 
I 

  his integral, which is also uniformly convergent for all a and t, can likdwise be evaluated 
in closed form. Hence the kernel L is continuous and is given by 

i i  2h 1 - 1 1 
- -log 

4 h2 +- (x  + t)2 
~ ( ~ ' ~ ) = 7 [ 4 h ~ + ( z + t ) ~ + 4 h ~ + ( x - t ) ~  2 d ,  4 h 2 + ( 2 - t ) 2  1 (29) 

, Since angle a is not given, we must add to the equations (22) and (30) the equation which expresses 
the fact thap the "external moment applied to the shaft is M. It is easily seen that the moment 
exerted on tp shaft by* the half-space is 

\ 

Y ,  2n r2 YOZ (r, - h  ) dr 
I i (30) 

0 .  

the integrand of which can be expressed in terms of m (t), and then equilibrium of the &aft requires that 

/ l m  ( t ) &  = 1M ' 
n~ 

(31) 
Q 

b 1. 
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I Q U 4 N T X T I E S  OF P H Y S I C A L  I N T E R E S T  I 
I 

We aow compute m16e quantities which are of great importance 

Shearing Stress pt z=-k C 

. To compute the boundary value of Ye* (7, - h)  for 0 C r  < b put the value of Ue from (11) 
$ (2) to get 

CQ 

Ye2 (7, - h) = I" $I - A ( t )  s3-& (B) + B  (0 cob ( f h ) l t .  J ,  ( ( 4  at , 
0 t ' '- 

which on substituting from (17) and u s i q  the relation &, (a) = J, .(c) becomes 
1, 

r $ f m ( t ) F f J o ( t r ) h t t d f .  o ' .  ' (32) 
0 

If we use 

J "  "{ f J ,  (&) sin g3 d t  = 
l ( t2  - @)* t > * 

0 
(33) 

and perform the indicated differentiation, we obtain 

b 

Ye2 (r, - h) = - y [ ,:","'. y O C r < b  , (34) ' 
r 2 / t a - r s  - ' S  ""'tll" I 

0 

-!- M is not difficult to show from (34) that Yez (.r, - h ) is 0 (r) as k + 0 and that the integral 
- 

remains bounded as r  -+ b. Hence we get square root singularity at  r =, b ; and, the constant sn (b)  or 
its equivalent na (1) from (40), is a measure of the strength of the singulari* at  the rim of the shaft. 

Shearing Stress at z = 0 

To compute Ys. ( .r,  0 ) for r > a, we first note from (2) and (11) that 

\ 
011 

I 

y e . ( r , o ) =  S t ~ c n  ~,caa,. (35) 
0 

Now using (20), ;we obtain 
0 

yez (,,(I) = - 4  P ,r , jv=2 + r + n p ( ~ ) a t . j ~ l  a i n b d l -  
0 

I 
0 

a 00 b 
-2 ifh 

- t ~ " J n ( t ) S t ~  J ~ ( I v ) ( ~  t t  - cos s t )  Y - ,U rn ( t )  dt . 
0 0 0 
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we obtain I 

> - - a  ' \ * '. 1 
'$ L + ( a ) +  C R ( u , v )  $ ( v ) d v  = u, o ~ u - :  1 

0 
(41) - 

1 1 

$(d  - j s ( u , v )  $ ( v ) d v - ~ ~ ( u , v ) + ( v ) d v = ~ ,  O < r <  1  (42) 
0 0 

with 
a2 

R ( ' u , v )  = - b K ( b r , a v )  

S ( u , v )  = a  L ( 0 %  w )  . * 
2b2 

T ( u , v )  = - a  K ( bv, au ) 

The kernels R, 8, 2" dan'be writteb in explicit form as : 
*." 

' B r2 + ( u  i- u  + Bv U -  PV R XU, V )  = 2  -log p + ( ~ - f i ~ ) ~  -E[ n y 2 + ( ~ + p ) 2 +  ~ ~ + ( U - B V ) ~  I (43) 

1 1  2 BY s (u; 2)) = - BY 4y2 + B2 ( u  + 
*(441 n [ ~ Y ~ + P ~ ( U +  VI2  + 4 P + ~ 2 ( u + d ) 2 ] - ~ ~ 1 0 g 4 y 2 + ~ ( ~ - ~ ) 2  

1 Y ? + ( V + B . ) ~  v + fiu v -  fiu 
. -r (u, 8)  = - 

/ ? % A  1 o g P + ( ~ - B ~ ) 2  Y ~ + ( V +  # I U ) ~ +  p + ( v - j ~ u ) ~  
where 

a h 
=, - andy = - b b 

I -  

,The numerical treatment of the system which governs thk problem was the usual one i.e, the system 
was approximated by sets of linear equations. The basic interval (0, 1) was first partitioned into 10 equal 
sub-intervals and that the trapezoidal rule was used in the treatment of the integrals. The linear equations 
were solved for the ten functional values each of 4 ( t )  and $ ( t )  for t=Op I , .  . . . . . . . . . . . . . . . . . . . . . . . . .; 
1.0 [ Q, (0) = (0) = 0  is abvious from- the integral equations themselves.] 

The relation 

1 I.0- 

iw 
t 4 ( t )  at = - % 0 . 9 -  

0 

which, is present in the system, was not used iq the solu- 
0.8- 

tion ;'instead, it was used to evaiuate the ratio M/M, - = 
after the functional values of + were obtained. '8  

0.7-  
To assess the accuracy of the solutions, the cal- 

culations were repeated using 20 sub-intervals and 
Simpson's rule. The second set of results was D s 6 -  
practically indistinguishable from the first. The 
results in question are shown in Bigs. 1-3 which 
respectively show the variations of 4 ( I ) ,  $ (11, 

. . 

, . 

M/M,, for y = 0.2, 0.45, 0.75 and 1.0. 
I I , I 

0 . 5  1.0 1.5 2 . 0  2.5 3.0 3.5 4.0 

b /a 
, Fig. 1-Effect df lnw on a'pplied torque. 
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