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In the present paper, the equations of internal ballistics ’Qf composite charge consisting of N component charges
with quadratic form function are solved. Lagrange density. approximation-and hydrodynamic flow behaviour,
have been assumed and the solutions are obtained for the composite charge for these assumptions.

‘ Methods based on the conventional density fuliction C/Ax have been given by Corner!, Hunt-Hind
and Clemmow?. Clemmow has discussed the solutions of two composite charges of the same composition
but of different shapes and sizes. Corner has reduced this problem to that of a single charge.

To consider gradual burning, Chugh®4 has suggested a new density function Cz/Ax. The theory has
been extended for composite charges by Prasad®’6, Kapur?’8&% Venkatesanand Patni'®, Aggarwalll, Gupta'?
and Tawakaley!3 have discussed the problem of composite charges under different conditions. A better appro-

ximation to the density of the propellant\gases, vViz, p = ___ﬂzo___ has been given by Aggarwal,

Modi ‘and Varmalt. /

Recently Narvilkar'® has discussed lagrange-approximation, p = ; ,Oz Ta—7 ‘tothe density
T Tyt 2a— 00T

of the combustion products for single charge. In this paper, this density function has been used to evaluate
the internal ballistic parameters for a composite charge..

. BASIC EQUATIONS
Let the composite charge consists of N component charges and the ratio of specific heats is the same for

each component. Subscripts i, b, s, m refers to the i component charge, conditions at the breech,
shot base and mean values respectively of the parameter.

The well-known equations for the form function coefficient and combustion are

g = (1—f)) 1 + 6: /) - p §))]
D; df;
B dt =f_1\D’“ | @
and the energy equation is given by ’
N ' ‘N N o ’
Z F;Ciz; =Py [Ko 4 4w — zoi % b; ——z —8:; 1—z) ]-l— y—LW 3)
s=1 f=1 g=1

Where W accounts for the work done by the reaction products in providing kinetic energy to the shot, propel-
lant gases as well as the dissipation in overcoming bore resistance and heat transfer to the gun barrel.
Equation for the constrained motion of the projectile within the barrelis

. dv .
}-Os)w% = AP, “4)
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_ HYDRODYNAMIC FLOW BEHIND THE MOVING SHOT

" The motion of the evolving combustion products behind the shot can be descnbed by considering the
equation of contmulty and equatlon of conservation of momentum. . : o

N . L
B 23 .
ZC" dt
= -~

- _
= : . B
2 TPy 0 ©)
serne> 4
) ==l :
" U U 1 2P o ’ .
2t "oy p 2y ‘ (©)

Hereu (y 1) isthe gas ve1001ty at a distance y ( Yy Ky <ys ) at any instant ¢ after the movement of the sho t

zc%"%

=1 =

from the breech. The term,

V 5
A (@ +1) _x_z Og'z“
: - — p":=1» . ‘

the gaséous products at’any time and thus is the sourcé function.

. denotes the mass rate per unit volume which is added to -

‘To make the equations dimensionless the following transfdfmations are used

. ‘ N )
E=1+ 7, Al::Ko—-z G e
o | = i .
v ByExCy Pl P, Al , | o
o 4Dy *°  FyCy ! T FyCy- re (7
f_ Pl P, Al 2N |
T FyOy T " FyCy T
: v B SN :
= = , Y=y, U= _—— . S
T= T, Z Ve | )
A mean dens’ity/v(.ca]lcd, Lagrange density'approximatipn) ' : ‘
, . g .
Z O‘i z > - . ' '
p= i= : ~ has been assumed to be constaht throughout the barrel

[ o—\'Ax—ZOz(l“zz)] ”

at a given instant. The solution for the non-dimensional velocn:y U and pressure { from (5) and (6) are

:‘k‘

o
o (¥ Yy (Y — z o |
“ U = : - i=1 — ' i (8)

B ié

=1

o)
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e

and .
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L=t — —F
1 Ci %
=1 S
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heree = o aiq : |
wereef‘m o AR M, = 106 w V2

It can be easily varified that (Y, — Y,) :‘-—-'( ¢+ 5 Z O_’ i ) ; and then - equation (9) at

: : e -
Y—Ybandl - {5 reduces to , ) I LT e -
z SASR Z, & AR e
omit —g— |G-

The mean non-dimensional pressure, (leﬁnedr as [y = TY_:—_Y—) f {dY can then be calculated usmg

" equation (9). It works out to be ’

N ' o R
g —-\01 dzza ’] :
Tl L oE g

, i=1 . p=1_ _
gm = {, i 6M1 [ ’ . ‘ Al - . .
and the k1net1c energy of the, propellant gases given by o . R
Yoo : S e ~
" equals to : ‘ TN ‘
; e
N [ ]
2 ) c ‘ : |
Vo C; Z; l[ o . N ; i . 5 N o I
_ =t e, (LN G %);_l. L o
Ep - ] l _7)" + Al : 8. dr Al L 8; dr: ! _(12)
L i=1 i=1 J

Kinetic energy of the shot is % wv2 and frictional losses due to bore resastance can be assumed equi-
valent to (0.05XK_.E. of the shot) Thus the total contents of the mechanical work done by the system are

N

125



‘5-1

B C; dz;
ST (Al 25w

Jur 1979

Where Eh 1s the energy losses due to heat transfer taken as e

g % . & 2. 7)
o Let

Then energy equatxon (3) takes the form

In non—dlmensmnal form equatron of the motmn of the shot viz. :

“dy
M"M gs

- where 5
Cdr T 7

By iy lndependent varrablc the abo"e e‘-‘luatlons of 1nterna1 ballistics transforms to
-

cdfi 1 (Bz ) Fy Dy (
- dg My, "\D;) 4v, "\

L, | : d?]/, - fMl,gajk

| N O @y
) TR Y “W)
SN e 0

“y—1 =(y—1) (1+KH)"“\
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equation (4) is

Cb#{é.»(i“%?%?iloﬁ ) =

k and

)

@3y

L (14),
a5
(18)

an

a8

(19)
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RELATIONSHIP BETWEEN THE WEB-FRACTIONS REMAINING
‘ ’ TO BE BURNT

From equation (2), we have

B, D 4 ~ ;
fr=14 57 « 5o - (fx=1) . (20)
where =1, 2 , (N —1) '
Writing | ey = [ (Dy/B)/(Dx/By) ]
where cr =12, .. s (N —1)

equation (20) is written as fy =1 — a, -+ a,f;

and. since a, f, = 0 for allr < N , thus we have

fv>1—aq, ‘before the charge of r*# size is burnt (21)
.and thereafter 4 _ ‘
’ fy<l—aq (22)
From equations (1) and (20), we have ,
Z,-_-(_l%'flﬁ, [1+a,-_%.(1—flv)] (23)
‘where r=12. . , (N—1).

L

The equations (13) and from (16) to (23) form the complete set of internal ballistics system for com-
posite charge. \ . : )

Initial conditions—At = 0 we have n =0, ¢ =1 and {s = {s = {m = {ss, Where (s, is thé non-dimen-
sional shot start pressure. Using these initial conditions and relation (23) in equation (13) we can find the
initial value of fv . If the value of fi so determined, is < (1'— ), it is understood that the shot does not
start until the lowest size charge has burnt. As such z; is put equal to 1 and fx is determined again from
equation (13) and initial conditions and equation (23). This time the value of fv is again compared with
(1 = ). If this value of fv is < (1 — ag) 2z is put equal to 1 and so on till the calculated value of
S isless than (1 — ar). Then remaining values of z; are calculated from equation (23) and (1).

Numerical solution—The system of equations (13 & 16—19) are approximated by ignoring the terms
of second order derivatives of z; and higher order terms.

N
) € Z C';z,-
dfy 1 = | (24)
o T \ T
d .
‘d—i = /(M &) (25)

&y = 3 (26)
N
T € Z C; %
‘ i=1
gm ={, ( 1 + 3 ) (27)
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N
z F; Qi N :
i1 — LN o L (*—1)
B W —im.[§— i Z‘szi(br— 8‘)] t 7 (28)
i=1

These reduced equations are solved numerically using initial values of z;, initial conditions and Runge- .
Kutta!® algorithm. At each step of calculation the inequalities (21) and (22) are varified. Accordingly
Z; values are substituted as 1 or determined by equation (23). Then using computed values of fy and ¢/

the values of {3, {;, {m are calculated from equations (26), (27) and (28). The evaluated values of
Ly, 245 €, L, Cs are used to find left out terms of equations (18) and (19) as

S (Ses) | S

1+ |~
}

o i=1

% M, 4 =L

=€8{( 1+ %z Oizi )‘__EADN dZN
1=1

T VoBx dn [ (L 65— 40y2y) 12

2

- N o " | r @)
Gerdem , |7

Then the values for {;, {m, {, are corrected accordingly
(¢ m)corrected = ({ m)palculate& — B (30)

({p)corrected = {; ecaloulated ~4’ . 3n

(&5 )corrected = [ (Cm ) ca;,lcula.ted +BI]

. (32)
(1+€*~ Ci 2 ) :

and

i — (33)
1 .
Al(£+ _Tzoizi./si ) o 4

After all burnt—Using anve described numerical technique we can get values of £, {, {m, {5, p and 5

when all the propellant is burnt i.e. fv = 0. Let the subscript mb represent conditions at total charge
burnt. Solutionafter all burntis given by
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[ r—1 1

| 1+ y
1 €
| | I X
L i=1
| S (- 1_)} 0
£ ={m { Emp — = ’ ' §; i ’
- Al J
Zsz sz ‘ .
€ 5
‘(1"}‘3209) (35)
\ i=1 :
i N
b=t (1+5 > ) @9
=1
y | ) |
|( F.C; { 1 X 1 ]!
PR PR L A CE T )
= = i=1 e £ i) |
(¢ ) U Fy Cx ¢ lL =t JIJ1

and density of the combustion products after all burnt is given by
- :
i=1 \
N .

1
4l §+Zl Z(C,/&?)
1=1

DISCUSSION OF THE RESULTS AND CONCLUSIONS

Results obtained by using above numerical technique and Hunt-Hinds method, for experimental data
given in Table 1, are presented in Table 2. The mean pressure distribution against the distance travelled
TABLE 1

EXPERIMENTAL DATA

(38)

Vol. of the chamber 120 cu in. ‘ Shot travel 60 in.
- Bore area 7.0543 sq in. Shot start pressure 3.5 tsi.
Shell Wt , 13.32'1b ’ Kn 0.1
' 4 1.25
PARTICULARS OF THE GOMPOSITE OHARGE OF THREE COMPONENT CHARGES
Component Charge Form Rate of Web Force Weight covolume Density
: coefficient burning size constant (cu in/lb) (Ib/cuin.)
: (infsec)  (in.) (in-tons/1b) 1b oc dr *
No.1 1 0.75 0.018 1900 4 11
No. 2 —0.172 0.75 0.0322 1900 4 i 2 %
No. 3 —0.172 0.75 0.0414 1900 1 11 13 27 0.06061
. TABLE 2
RESULTS OBTAINED FROM HUNT-HIND’S METHOD AND PRESENT METHOD
Particulars Huxnt-Hinp’s Method Present Method
- Muzzle velocity 1997 ft/sec 2023 fijsec
Maximum Pressure - 16.8 tsi 16.5 tsi
All burnt position 43.8 in, . 44.5 in.
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by the shot is shown in Fig. 1. Initially mean pressure is high in the Hunt-Hinds method than the new me-
thod but after all burnt it is low. Predicted maximum pressure using the new method is less than the Hunt-
Hinds predicted maximum pressure. Density curves predicted in Fig. 2 shows that the density of the pro-
pellant gases, based in the Hunt-Hinds method is maximum initially and then decreases continuously.
Density curve based on the present method shows that the density of the combustion products increases in
the initial stage of the movement of the shot and then slowly decreases. All burnt position predicted by
the Hunt-Hind’s method occurs early than the predicted all burnt position of the present method. Muzzle
velocity calculated by the new method is close to the Hunt-Hinds predicted muzzle velocity.

o 020
° 7 ' \
RLg --———HUNT - HIND METHOD .016 4
 ——— PRESENT . METHOD
- 014+
v £
= o4 8«012 -
g [ 22010 -
g >+008 -
g g
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+002 -
0 S T = T T ' 0 - Al T T yo T 1
o % 20 30 4 50 60 0 0 20 30 40 50 60
DISTANCE TRAVELLED BY THE SHOT (INCHES DISTANCE TRAVELLED BY THE SHOF (INCHEST

Fig. 1—Variation of the mean pressure with the distance Fig. 2—Variation of the density of - the propellant gas with
travelled by the shot, the distance travelled by the shot.

The method presented here is very easy, provided a computer is used. The system of equations dis-
cussed above have been derived from the fundamental theory of hydrodynamics and Lagrange density func-
tion without any other approximations and assumptions. The above method gives results which matches
closely with that of experimental values.

It may be pointed out that the technique presented is capable of accurately simulating gun cycle for any
loading conditions.
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