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In the present paper, the equations of internal ballistics qf composite charge consisting of Ncomponent charges 
with quadratic form function are solved. Lagrange density approximation and hydrodynamic flow behaviour, 
have been assumed and the solutions are obtained for the composite charge for these assumptions. 

Methods based on the conventional density fdction C/Ax have been given by Corner1, Hunt-Hind 
and Clemmow2. Clemmow has discussed the solutions of two composite charges of the same composition 
but of different shapes and sizes. Corner has reduced this problem to that of a single charge. 

To consider gradual burning, C h ~ g h 3 ' ~  has suggested a new density function CzIAx. The theory has 
been extended for composite charges by Prasad5'6. K a p ~ r ' ' ~ & ~ ,  Venkatesan and Patnil0, Aggarwall1, Gupta12 
and Tawakaley13 have discussed the problem of composite charges under different conditions. A better appro- 

ximation to the density of the propellant gases, viz , p = 
c z  

C 
has been given by Aggarwal, 

Modi and Varma14. 

Recently Narvilkar16 has discussed lagrange-approximation, p = 
Cz 

c (1 -2) 
s I the 

of the combustion products for single charge. In this paper, this density function has been used to evaluate 
the internal ballistic parameters for a composite charge. 

B A S I C  E Q U A T I O N S  

Let the composite charge consists of N component charges and the ratio of specific heats is the same for 
each component. Subscripts i, b, s, m refers to the ith component charge, conditions at the breech, 
shot base and mean values respectively of the parameter. 

- The well-known equations for the form function coefficient and combustion are 

2; = (1-fi) (1 + Oi fi) (I) 

and the energy equation is given by 

i=l i = l  d= 1 

Where W accounts for the work done by the reaction products in providing kinetic energy to the shot, propel- 
lant gasesas well as the dissipation in overcoming bore resistance and heat transfer to the gun barrel. 
Equation for the constrained motion of the projectile within the barrel is 
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H Y D R O D Y N A M I C  F L O W  B E H I N D  T H E  M O V I N G  S H O T  

Themotion of the evolvingcombustion products behind the shot can be described by consideringthe . 
equation of continuity and equation of conservation of momentum. 

N 

f 
2 P 2 ?( e= 1 

at  
- + P , =  

c Y  
N (5) 

A ( X + Z ) + ~ ~ -  6i A 

i s 1  

a. - 2u 1 2P + u - = - - -  
? t  29 P  2Y (6) 

Here u (y, t) is the gas velocity at a distance y (yb  <y C y, ) at any instant t after the movement of the shot 
M 

d.Zi 2 -z 
ii 1 

from the breech. The term, N den mass rate per unit volume which is added to 

~ ( x + l ) r x =  
-i=l 

6; 

the gaseous products at:any time and thQs is the source function. 

To make the equations dimensionless the following transformations are used . . 

x 2 - ci 7 I- - ( = i f i  y AE=Ko- 
6; 

i= l  

v,, = 
Piv 5 CN PA1 , -5 = - P, Al 
a DN 

P N C N  ' i a =  - PN CN 1: (7) 
P, A1 5, = --- P, A1 Vet 

3 m = m  
, 7' - 

FN CN 1 I 
I 

v v 
' l=- y Y=y/Z, U = -  . i 

vo V@ 
A mean density (called Lagrange density ' approximation) 

1 .  

2 - - 
Ci zi ! 

i = l  
P  = N has been assum'ed to' be constant throughout the barrel 2 Ci (Is; %) ] / [&+ A. -- 

i= l  f 
at a given instant. The solution for the non-dimensional velocity U.and pressure 5 from (5) and (6) are 

N 
1 C dzi 

n (Y - ya) + -qi(y  - Y,) 22 ;i; 
i= l U = N , (8) 

\ ( P + & C ~ )  
i=l 

124 
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R E L A T I O N S H I P  B E T W E E N  T H E  W E B - F R A C T I O N S  R E M A I N I N G  
T O  B E  B U R N T  

From equation (2), we have 

. . . . . . . . . . . .  where r = l , 2  , . ., ( N  - 1 )  

Writing = [ ( D r / f l r ) / ( D ~ / P ~ )  I 
. . . . . . . . . . . .  where r = 1 , 2 , .  ., ( N  -- 1)  

equation (20) i? written a7 f N  = 1 - a, -?- a, f ,  

and since f ,  2 0 for all T < N ,  thus we have 

fN > 1 - a, before the charge of rth size is burnt (21) 
and thereafter 

f~ < 1 - -a ,  (22) 

From equations (1) and (20), we have 

where ~ = 1 , 2  ,.... . . . . . . . . . . . . ,  (A"-1).  ( 

The equations (13) and from (16) to (23) form the complete set of internal ballistics sstem for corn- 
posite charge. 

Initial conditions-At 7 = 0 we have 7 = 0, f = 1 and 56 = 5b = 5m = 588, where 5,, is thd non-dimen- 
sional shot start pressure. Using these initial conditions and relation (23) in equation (13) we a n  find the 
initial value  off^ . If the value  off^ so determined, is < (11- d l ) ,  it is understood that the shot does not 
start until the lowest size charge has burnt. As such zi is put equal to 1 and f~ is determined again from 
equation (13) and initial conditions and equation (23). This time the value of f~ is again compared with 
( 1  - az). If this value of f~ is < (1 - a,) Z Z  is put equal to 1 and so on till the calculated value of 
f~ is less than ( 1  - d r ) .  Then remaining values of zi are calculatedfrom equation (23) and (1). 

Numerical solution-The system of equations (13 & 16-19) are approximated by ignoring the terms 
of second order derivatives of zi and higher order terms. 
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These reduced equations are solved numerically using initial values of z,, initial conditions and Runge- . 
l$utta16 algorithm. At each step of calculation the inequalities (21) and (22) are varified. Accordingly 
2% values are substituted as I or determined by equation (23). Then using computed values of fN and 6: 
the values of i8, (, are calculated from equations (26), (27) and (28). The evaluated values of 
Cb , Zip I ,  Ss, 5, are used to find left out terms of equations (18) and (19) as 

\ 

and 

Then the values for [ m y  C8 are corrected accordingly 

(&,)corrected = tb calculated -A' . (31) 

and 

4 Density function of the reaction gases can be calculated from equation 

i= 1 
P =  - 

i= 1 

After all burnt-Using above described numerical technique we can get values of 1, 5,, 5,, C,, p and ,, 
when all the propellant is burnt i.e. f~ = 0. Let the subscript mb represent conditions at total charge 
burnt. Solution after all burnt is given by 
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and density of the combustion products after all burnt is given by 
N 

D I S C U S S I O N  O F  T H E  R E S U L T S  A N D  C O N C L U S I O N S  

Results obtained by using above numerical technique and Hunt-Hinds method, for experimental data 
given in Table 1, are presented in Table 2. The mean pressure distribution against the distance travelled 

EXPERIMENTAL DATA 

Vol. of the chamber 120 cu in. Shot travel 
7.0543 sq in. 

60 in. 
Bore area Shot start pressure 

13.32 lb 
3 .5 tsi. 

Shell Wt KH 0.1 
Y 1.25 

PARTICULARS OF THE COMPOSITE CHAROE OF THREE OOMPONENT CHAROES 
- 

Component Charge Form Rate of Web Force Weight covolume Density 
coefficient burning size constant 

(inlsec) (in.) (in-tons/lb) lb dr 
(CU inllb) (Iblcu in.) 

OC -. 
NO. 1 1 0.75 0.018 1900 4 

1900 4 
27 0.06061 

No. 2 -0.172 0.75 0.0322 
0.75 0.0414 1900 1 11 

1;' 27 0.06061 
No. 3 -0 .172  13 27 0.06061 

TABLE 2 
WULTS OBTAINED FROM m - £ U r n ' s  METHOD AND PRESENT METHOD 

Particulars HUNT-HIND'S Method Present Method - ------- _.- 
1997 ftlsec 

----_ 
Muzzle velocity 2023 ft/sec 
Maximum Pressure 16.8 tsi 16.5 tsi 
All burnt position 43.8in.  , 44.5 in. 
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by the shot is shown in Fig. 1. Initially mean pressure is high in the Hunt-Hinds method than the new me- 
thod but after all burnt it is low. Predicted maximum pressure using the new method is less than the Hunt- 
H i d s  predicted maximum pressure. Density curves predicted in Fig. 2 shows that the density of the pro- 
pellant gases, based in the Hunt-Hinds method is maximum initially and then decreases continuously. 
Density curve based on the present method shows that the density of the combustion products increases in 
the initial stage of the movement of the shot and then slowly decreases. All burnt position predicted by 
the Hunt-Hind's method occurs early than the predicted all burnt position of the present method. Muzzle 
velocity calculated by the new method is close to the Hunt-Hinds predicted muzzle velocity. 
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~ i g .  1-Variation of the mean pressure with the distance Fig. 2-Variation of the density of the propellant gas with 
travelled by the shot. the distance travelled by the shot. 

The method presented here is very easy, provided a computer is used. The system of equations dis- 
cussed above have been derived from the fundamental theory of hydrodynamics and Lagrange density func- 
tion without any other approximations and assumptions. The above method gives results which matches 
closely with that of experimental values. 

It may be pointed out that the technique presented is capable of accurately simulating gun cycle for any 
loading conditions. 
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