‘YPROPAGATION OF OYLINDRIOAL AND SPHERICAL EXPLOSION WAVES IN AN
EXPONENTIAL MEDIUM

G. Dee Ray & J. B. BHOWMICKf

L St. Xavier’s College, Calcutta
( Received 2 Febmary 1973 )

Solutlons for'a strong point or line exploswn, ind medlum whosge. denswy inereases exponentially under low constant
pressure, are obtained in this paper.. The dlsturbance is headed by & shock surfa,ce and the total energy of the wave in-
creases Wlth time.

Propagation of planar shock waves, in a medium whose dens1ty follows an exponentlal law, has been
studied by Raizer?, Grover and Hardy? & Deb Ray3. The importance in such a medium, of cyhndrlcal
and spherical blast waves, to astrophysical problems has been brought out by Grover & Hanrdlv2 ~

This paper presents a qtudy of a strong point or line exploslon ina gaseous medmm under low uniform
pressure and with a’ density that increases exponentially from the site of explosmn The disturbance is
headed by a strong shock surface, spherical or cylindrical. Effects of viscosity and heat conductlon have
not been taken into account. The integrals to the hydrodynamical equations, involving quadratures, form
a set of non-similarity solutions. Besides, it is interesting to find, as desirable, that the total energy of the
wave increases with time. The strength 'of the shock at the head of the wave, although very large remains
constant throughout

EQUATIONS OF MOTION AND BOUNDARY CONDITIONS

The flow behmd a cyhndrlcal ar a sphencal shock surface are governed by the followmg equations of
" motion : : :
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w,p;p Tepresent the velocity, pressure and densﬂ:y of an element of gasat a radlal distance r from the centre
or the line of explosion ; y is the ratio of speclﬁc heats and v = 1 or 2 for the cyhndrlcal and spherical
symmetry respectlvely

1f ahead of the shock, moving outwards Wlth veloclty V(= dTR ), the undisturbed density be p,

and the pressure, density and velocity just behmd the shock be Py pr and uy respectlvely, then the conditions
for a strong shock are
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where R denotes the radius of the shack, p and B being suitable constants. |
Let us seek solutions of the equa.tmns ( 1)—( 3) in the form
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where constants and A are to be determined from the condltrons of the problem At the shock
surface the value of 7 is assumed constant Hence J
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In orcler that (14) may represent an outgomg shock surface A <0. ‘ ' .
The solutions of equatlons (1)~(3) in the form (10) (14) are compatlble Wrth the shock cond1t1ons, if
\ Sp=2and A _4—_—/3/2 C o (15)

: Smce necessa.rﬂy A<0, (15) shows that /3 >0. In other Words, the shock surface expands outwardly in
an exponentially increasing medium. It can be easﬂy verlﬁed tha,t the strength of the shock under these
k condrtlons rema,msk constant. ; ‘
From (14) and (15), we get ;
B=pleg . (1)

't being the duration of the al most. mstantaneous explosmn }

SOLUTIONS OF THE EQUA’L‘ION/‘S"’OF MOTION

'The condition inside the wave is obtained from the solutrons “of equatrons (1)-(3).
From (12), (14) and (15) we get -
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From (11), (14) and (15), we get ,
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EQuation (1) may be re-written in the form B k o
| dE 1 d (o, L
T W e\ ”’)’ : (1)

which on integration,“after using conditions f(ﬁ)—-(8),. gives
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Here, E, and I; represent respectively the values of E and I just inside the shock surface. Besides,
we seb ‘
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We can also ‘express , |
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Equation (2), by using (17), may be written as. '
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which on integration gives '
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By using (17) and (18), equation (3) can be written as ; .
' 1 e _ vy 2 n yBR
» ‘ p ) 3,-’ e ,31" w ‘”"_-_,1 .
_This on integration gives - : ’
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Equations (20), (24) and (25), involving quadratures, give the solution of our problem, » =1 and 2 re-
presenting the eylindrical and spherical case respectively. In the case »=0, representing a plane explosion,
the solutions reduce to simple algebraic integrals as has been studied by one of usd. :

The total energy of the wave is non-constant, and varies as the square or the cube of the shock radius
accordingly as the explosion is of cylindrical or spherical symmetry.

NUMERICAL INTEGRATIONS:

For numerical evalué.tion, we choose a particular value of y. - This enables us to obtain the values of
w/V, pi/p,V? and p,/p, from equations (6)~(8). Next, a given instant of time corresponds o a definite
value for t/t, which is necessary to get numerical results.

We can now proceed with integration from the shock front inwards. At the shock front ' =1 and -
u,|V is kmown. The next step consists in taking a set of neighbouring values of #* below 1, and choosing
by method of trial and error thz corresponding value of u’, such that equations (20), (24) and (25) are satisfied.
The quadratures are evaluated by Simpson’s method, the mean value for «’ being taken at the mid-interval.
This may be carried out until the singularity of the solution " = 1 is reached. This corresponds to the
critical surface marking the expanding ‘'surface of the inner vacuous region, '
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“Asg is well- known, the conservatlon of mass Wlthm

In Ca,se A RHS of (26) ylelds 041 PR CIn Case B, R. H S of (26)- equa,ls -0238
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~ This small over-estimation in calculatxon of mass in each of the cases. festlﬁe% that our numerical results
are sufficiently accurate and our approach is practicable and useful. Besides, we conclude that in both
the cases, the entire mass m the sphencal blast waye forms a very thin shell near the outer boundary
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