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Solutions for a strong point or line explosion, in a medium whose density increases exponentially under low constant 
pressure, are obtained in this paper. The disturbance is headed by a shook surface and the total energy of the wave in- 
creases with time. 

Propagation of planar shock waves, in a medium whose density follows an exponential law, has been 
studied by Raizerl, Grover and Hardy2 & Deb Ray3. The importance in such a medium, of cylindrical 
and spherical blast waves, to astrophysical problems, has been brought out by Grover & Hardy2. 

This paper presents a study of a strong point or liae explcsion in a gaseous medium under low uniform 
pressure and with a' density that increases exponentially from tihe site of explosion. The disturbance is 
headed by a strong sl.ock surface, spherical or cylindrical. Effects of viscosity and heat conductidn have 
aot been taken into account. The integrals to the hydrodynamical equations, involving quadratures, form 
a set of non-similarity solutions. Besides, it is interesting to find, as desirable, that the total energy of the 
wave increases with time. The strength'of the shock at the head of the wave, although very large, remains 
constant throughout, 

E Q I J . A T I O N S  O F  M O T I O N  A N D  B O U N D A R Y  C O N D I T I O N S  

The flow behind a cylindrical or a spherical shock surface are governed by the following equations of 
motion : 1 

3P - Y P  3~ - 
at P at + ) , (3) 

where E = + p u2 + ply--1 (4) 

u,p,p represent the velocity, pressure and density of an element of gas at a radial distance r from the centre 
or the line of explosion ; y is the ratio of specific heats and v = 1 or 2 for the cylindrical and spherical 
symmetry respectively. 

dR If ahead of the sbock, moving outwards with velocity V ( = - ), the undisturbed density be 
at 

and the pressure, density and velocity just behind the shock be p,, p, and TA, respectively, then the conditions 
for a strong shock are 
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= P 
Y S - 1  

l 0 Y - 1  (8) 

Let pa be a small constant and 

p, = p* em (9) 
where R denotes the radius of the shock, p* and j3 being suitable constants. 

Let us seek-solutions of the equations (1)-(3) in the form 

1 
\ 

u =  - (7) (10) 
I 

p = tp2  P (q) (11) 
I 

P = tCLa ( r l )  (12) 
/ 

r )  =teb (13) 
where constants p and X are to be determined from the conditions of the problem. At the shock 
~urface, the value of q is assumed constant. Hence 

1 . . v=--- 
Xt (14) I 

In order that (14) map represent an outgoing shock surface X < 0. 

The solutions of equations (1)-(3) in the form (10)-(14) are compatible with the phock conditions, if 

p - 2 and X = - p/2 . (16) 
fiince necessarily A < 0, (15) shows that /? > 0. In other words, the shock surface expands outwardly in 
an exponentially increasing medium. It can be easily verified that the.strength of the shock under these 
conditions, remains constant. 

From (14) and (15), y e  get 

2 t 
R = --log - , B to (16) 

to being the duration of the a1 most instantaneous e~plosion.~ 

B O L U T I O N S  OF T H E  E Q U A T I O N B " 0 F  M O T I O N  

The condition inside the wave is obtained from the>olutions-of equations (1)-(3). 
From (12), (14) and (15), we get 

ap - =  CG 1 ap 
at ? P +  r-* ar (17) 

From ( l l ) ,  '(14) and '(l5), we get _ C 

- 3p =-v-. 3P 
at ar (18) 

Equation (1) may  be re-written in the form. 

dE 1 - -  - a 
drl - ( rtv ut I ) 9 (19) 

I 

which on integration, after using conditions '(6)-(s), gives 

10 
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P' 

u' I 
7 - dr' . 

El 
(20) 

Here, El and I l  represent respectively the values of E and I just inside the shock surface. Resides, 
we set 

r u r' = - and ur = - v .  
We can also express 

E - = ( Y +,I  )2 P P . - .  u'2 + + .  7 

El Y P1 P1 
(21) 

and 
I -- - ( r + 1 I 2  P YP . - . u r 2 + +  . - . 

El Y P1 Pl (22) 

Equation (2), by using (17), may be Gritten as 

1 ap ~ P R  1 au' 1 VU' - .I = -- + --.- 
1 - u' ar' + m- -7 p ar u' - 1 (23) 

which on ktegration gives 
v' 9.' 

t dr' dr ' 
= 2 log 1% 2 to . r' ( 1 - u ' )  

1 .  1 

By using (17) and (18), equation (3) can be written as 
1 aP Y - . -  = - . -  
9 art 

This on integration gives 

P P dr' log - = y log 7 - 
131 P 7 (21% f ) J 1 1 -  

Equations (20), (24) and (25), involving quadratures, give the solution of our problem, v - 1 and 2 re- 
presenting the cylindrical and spherical case respectively. In the case v =0, representing a plane explosion, 
the solutions reduce to simple algebraic integrals as has been studied by one of us3. 

The total energy of the wave is non-constant, and varies as the square or the cube of the shock radius 
accordingly as the explosion of cylindrical or spherical symmetry. 

N U M E R I C A L  I N T E G R A T I O N S  

For numerical evaluation, we choose a particular value of y. This enables us to obtain the values of 
ul/v, p,lpJ2 and from equations 46)-(8). Next, a given instant of time corresponds to a definite 
value for tito which is necessary to get numerical results. 

We can now proceed with integration from the shock front inwards. At the shook front v' =1 and 
ul/V is known. The next step consists in taking a set of neighbouring values of r' below 1, and choosing 
by method of trial and error ths corresponding value of u', such that equations (20), (24) and (25) are satisfied. 
The quadratures are evaluated by Simpson's method, the mean value for u' being taken at  the mid-interval. 
This may be carried out until the singularity of the solution u' = 1 is reached. This corresponds to the 

surface marking the expanding surface of the i ~ e r  v~cuous region. 



.:*;x;", 

\ 
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Nun~erical integrations have been carried out igr a epherical bxplosion. . The results, calculated for 

t ,A 

- 4  

only two particuler eases A and B representing ,-- y 2 a& 10, an6 y= 1.4 are given in Tables 1 and 2. ' 

to 1 ' . 
* ,  

> * 

TABLE 1 TABLIB 2 

NUNERICAL INTEGRATIONS FOR SPHERICAL EXPLOSION NUMERIOAL INTEQRATION FOR S P ~ R I C A L  EXPLOSION 
, 

Case A :  ~ = 2 ,  y=la4,  t/to-2. Caw B : ,-a, . ,=l.4, t/t,=lO. 

- 
2' u' -'* P/ PI P/PI r' U' PIPI PIPI 

.--a 

1 .833 . 1 1 1 .833 1 1 
975 4373 - 736 909 

+ 975 .a49 
-950 - '412 

~913  
.793 

.520 .879 
.925 ~961  a285 a851 4 950. a881 -160 a695 

I 
a915 .975 .I92 -793 , -925 . ~ 9 2 1  -048 . ,635 
.905' .991 .094 , a756 -900 , .973 ,004 

, 
:625 

- - 
-. ' 

As is well-known, the conservation of mass within the shock surface is given by 

' 2 '  + P3R' (I - aSB) 1. (26) ' 
, 

In Case A, R.H.S. of (26) yields -041, . In Cave B, R.H.S. of (26) equals -0238 

whereas . r 1 2 d r ' = .  0174. 

-906 -9 

This small over-estimation in calculation of mass in each of the cases testifies that our numerical results 
are sufficiently accurate and our approach is praoticable and useful. Besides, we conclude that in both _ 
the cases, the entire mass ip the spherical blast wave forms a very thin shell near the outer boundary. 
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