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An exact solution for the fluid temperature due to forced convective heat transfer in an annulus is obtained as
a solution of the eigen value problem. :

The annulus represents a common geometry employed in a variety of heat transfer systems ranging
from simple heat exchangers to the most complicated nuclear reactors. In this note, a theoretical analysis
for the forced convective heat transfer.in an annulus is presented. The exact solution for the fluid tempes
rature is determined in the most general form, as a solution of the eigen value problem.

BASIC EQUATION AND SOLUTION

Consider the flow of an incompressible viscous fluid in an annulus, taking the cylindrical polar
system (r.¢, x) in which the axis of the cylinders is along the x-axis and r denoting radial distance. The
walls of the annulus r = g and r = b are kept at uniform temperatures. .

" The local axial velocity for the fully developed laminar flow can be obtained as
2 Un 2/g |
ulr) = FE D im = @—1) [ (1 —7%/a®) Ins 4 (s> — 1) In r/a ] (1)

where U, is the mean velocity and s = bfa.

Assuming that the fluid has constant properties and including the effect of axial conduction and viscous
dissipation the energy equation is

3T -2T 1 -7 2T v [ 2w \2 q '
Y3 =k (:'r2 T -r + g +v (_9;7) +;E’ (2

- where c is the specific heat, k the thermo-metric conductivity, » the kinematic viscosit
heat generation. »

Y. gfec the uniform

Fhe Boundary conditions are

T, a) = T+, )

T(x,b)*—-;T“l"a} forz >0 - | (8)
T, a) = T'—a}

T(@, b) = T3 forz <0 4)

We now solve the energy equation as an eigen value problem.

Let T, denotes the solution of (2) for x < 0 and T5 the solutions for x > 0. These two solutions are
obtained separately and matched at x = 0 by using the following matching conditions :

T,(0,7) = T, (0, 7)

2Ty (0,7) 2T, (0,7) | : ()
3% e

Considering the sqution of (2) in the region x > 0 and taking that 7 uniformly tends to some function
T, independent of x as x o0, the equation (2) is simplified to
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- (—-%):ﬂr) s o

while wntmg (6) the term due to heat generatmn is neglected

where

Thus the general solution of (6) usmg the proper boundary conditions (3) and 4) will be

e <)+ i (oje) [( (T, = T+) + Pu ) | fora >0 M
and , R | |
| = T=ut Pue) + 2 [(T‘Q%T‘b)—l-}”ab ) ] pra<o @
Where ’ S 7 .

Pﬁz(s)—f(ﬁ—sf(s)ds-—f (1—s)f(s)ds S .

The solut1ons Ti also partlcular solutlons of 2 for the regxons x > Oandx < Orespectwely

By introducing the followmg dlmensmnless varlables in (2).

Tr—7T,
=1, = 0 FE=n o, __;1776 ‘afy | x (10)’
where Pe’ is the Peclet number (2) is reduced to , 7
220 1 18 1 2% 2 [ . 130 , o
T T T PERE T H ‘[\(1 —M+ N l”"],:f - b
: : o : C\2
=4+ B (-N~ — 211).
7 B
where | o
' o g B — 4y Uf'L ‘
T opek (Te— Ty = keM2(T,—T,) . : (12)
Y e , o
—(82+1——]V),N= Ins ]
The boundary condmons now become: S .
G—Oatn__l a,ndv)-—()f01§>0 _ (13)
§=1in 1 < 5 <sfor=0, (1
0> 6% as £ > oo for0<'n <1, | (15)
" where _ g ‘
l (- .
0, = 4—:;@—%1— [A(l —s%) + B {2.2\72 (Ins)? — 41/\7’;(3‘a F1) st 1 } ] +
7 [A(,f — 1)+B{QN‘Z(ZM)2~.-—4N(172—1) o —1 }] R ()

| | Let Ty (6 m) = T (@ + 0" 1 (&) o
8 | . p SO | |
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and | Ty (€ 1) =T+g () +6* 5 (67 (18)
then 0*; and 6%, satisfy the equation (11) for the regions ¢ < Oand ¢ > 0 respectively.
7 The sobution of (11) can be written as :

=X () + 0, - (19)
where i () satisfies the equation of the sturm-Liouville form |
2 1 dy A2 2 .
e +  an ['P_ez + ‘(1 — 2 = N lnx) ]¢=0 (20)

Since the origin is exluded from the-ﬁeld‘the‘eigen function in this case will be
e 4 ‘ _ \
$(n) = z O [Jo(a,, 1) Yo(a,) — Jo(a,) Yo (o, n) (@1
where J, and Yo are Bessel functions of first and second kind. |

It is clear that 3 (1) vanishes when 9 = 1 ~and n =5, provided a, is a root of |
;[Jo (@n 8) Yo (an) — Jo(an) Y, (an 5)] =0 - (22)

Equation (20) has two sets of complete eigen functidns, one corresponding to the positive eigen values
denoted by A, + , and the other to the negative set of eigen values An . : '
In terms of the separate solutions, we have ,
S C g . -
P =2 ey, me forg<o | (29)
B S e
where the ax are constants and+m is the eigen function correspondingto A% . The summation extends only
over the An. : . -
Similarly
‘ )\;Iz-g ,
~ + 4T ’ ‘ -
0% (£, 9) = X +a ¥n (n)e (24)
An
which holds in £ > 0.

+ +
For the sake of convenience, we shall write henceforth a, = a, and ¢, = y,.
Multiply (20) by 1 Jo(@m 1) ¥, (¢m) and integrate w.r.t. o between the limits'0 to 1, similarly multiply

(20) by n Jo (em) Y, (am n) and integrate w.r.t. n between the limits 0 to 1 and substricting ‘these expres-
sions,* we get the following equation involving the coefficients @, and eigen values X’

N » 2 1 '
Dl (3w +3r—=) 7 “ )1 )| 4

n=1

‘ A J ’a Y n 3 - |
o+ _ﬂ {_9_(.__'.'2?;:4“1:—)[—"84912(“”3) +g12 (an) +

+ 3 { 5 910 (a‘ )_; ;(110 (@) }] 1 3:2n [32 R, (/ans) —

*In this process o m Tneed not be the sam. igen value as w4
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—Ry(o) o [ — 58y (00) + 5y ) e

15 [— S Ri(a) + Rafor) — # B, () - Bo 2 [E
4+ N [82\1312 (@, 8)ln 3—/32‘31(% 8) 4 By (o) +

+ ‘32 Sa (a s)— Sz (a,) }'-f 2{ éz K, (ans) — K, (“n)}

{ s? 920 (“ns) —920 (“n) } Jo (“n) Y, () ]”

[—s L (ac”s) z (‘:mle (ams i o+

+ Ll( n) Z (“le(“m

2 .
_sL1 o S)Z i L2 (oc,,,s) Om. + i

(e —

8

MS SER R

-+

l
—

> Ly (am
) = _jfj‘z)s om +
L (an
+a, { sLa (a,$) Zai';'—;‘l%'%;- am —
A ) M=1 "
— Liy(ay)s z -%E_I(C;Lg)s- O }\] = 0. (25)
m=1 S (m#n) ;

“The otations used in'(25) are given by
L;(0,8) = Ji(a,8) Yy (a,) — Y;(a,8) Iy ()
;o 9ij (248) = Ji(a,8) Yi(a,) + J; (a,8) Y;(a,)
R;(a,8) = J 3 (a,8) Y2 (0,) + Yi#(0,8) g2 (e, ) /
Si(c, 8) = Ji(a ,8) Jo(0,8) Y2 (ay) —’f—‘ Y (a,8) Yo (a,8) Jo? (ay)
Ky (ocn 8) = Jy1 (0n8) Yy (a,8) Jo (a3) Yo (an)s
where i, j take values 1, 2 respectively.

In obtaining (25), use of condition (13) has been made. The condition for the non-vanishing of a, gives
rise to the infinite determinant

A (A =0 (26)
The diagonal elements of this infinite determma,nt contajn a quadratic expression in A, and therefore (26)
has an infinity of positive and negatlve roots,
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Let the relevant roots be A,(p=1,2......) and corx sponding to each A, there are infinite number of
coefficients a,? (n=1,2........ ). [to be obtained from 25) after replacing A by Ap and g, by a, ?. All the
‘constants ar, canbe expressed in terms of ary

It now remains to calculatevaz’p. Hence 1f we write

0 =Z X (9 [Joamv)) o m) Ty () Vo (m 1) | + 0, @0
m=1 . )
where ,
R n
Xn (§) = aPm € o (28)

and using the boundary condition (14), we have

1 = zl [ 0 (“m"l) Y, (“M) —' Jo (em) Yo (dmn) ] ‘
.8 ‘ v
;}Z aPm } +6, _, : (29)

. Multrply (29) by 9 J, (amn) Y, (a) and integrate w. r.t. 7 between the limits 0 to 1, similarly multiply
+ (29) by 1/, (em) Y, (amn) and mtegrate w.r.t. 7 between the limits O to 1 and subtractmg them, it reduces to
the followmg expressron since a?n can be expressed in terms of a™, _

sLy (am8) — Ly (am) 4

Am 2dm3

a’”mFm = [ 2 8Ly (ams) — Ly (0m) ]—-

— Zg— [2.(3L1 (em$8) {2 s?(s2 —1) — 2N (2 s — Nin s) +
.-
+1+— (N — )+ —p b+
m \

-4
o e (1 —2N) — ol | -0

Am

where F, is a known function of Ax and ay. These equations determine @™, hence eigen functions and
eigen values are thus obtained.

The complete solution of the problem is thus given by

'Tl (fr = 'w n)—-}—za“'l/l— —)\nf ’

f0r§<0

cand

. +
Ty, n) =T () +Z at, P (n) eV ¢
A;f

for £ <0,
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Graphxcal representatlon of the temperature proﬁles isprovided in Fig. 1. Typical isotherms for Pe=1
show that there are marked variations near £==0, while they are almost constant elsewhere. On the other hand
isotherms for Pe=10 almost parallel to £-axis. From the computations of profiles it is seen that they are

 parallel to £-axis for all other higher Peclet numbers. The Fig. 1 could be supplemented by Table 1 gwmg
the Eigen values for a set of Peclet numbers. ‘

{

17 o o Tasie 1

1 0_' The Eigeh valves for a set of peclet numbers.
Pe ' A Ty

0491 e : )

- | 1.0 7.64 _
. 64 5.96
: . 5.0 . ‘ 60.88 - —-18.68
07 4 10.0 - 192.45 —23.65

50.0 4246.96 —26.87
210 08 06 04 <02 Q0 02 0% 06 08 10
Fig. 1 Temperatﬁre profiles for Pe = 1.0 and Pe = 10.0. '
J
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