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The laminar source flow of second ogder fluid between two infinite parallel disks rotating with different velocities has 
been studied in this paper. The solution has been obtained by double series expansion about a known solution at a 
large radius. The effect of nowNewtonian parameters has been discussed on velocity profiles for small rotational Taylor 
numbere of the disks. 

Laminar source flow between two parallel disks rotating at the same speed, has been investigated by 
Breitner & Pohlhausenl and Kreith & Peubet3. Pelech & 8hapiro4 have obtaihed an approximate . 
first order solution when one disk is rotat,ing and, the other is stationery as a byproduct of 
an investigation of the deflection of a rotating magnetic recording device. Kreith & %viands 
considered axisymmetric flow between two disks, rotating at different angular velocities with a source a t  
the centre. The Reynolds number Re based on source strength and the Taylor numbers ai (i=1,2) associat- 
ed with angular velocity of each disk, are all assumed to be small. The problem is solved by expanding 
the flow variables in powers of Re about a known solution. This solution is also represented in a series ex- 
pansion with as perturbation parameter. The results are valid for small values of mi and a t  a distance 
r >> RelI2/a; . Recently it has been shown by Mellor6 et al., that the steady flow of a viscous incompres- 
sible fluid between two coaxial infinite disks, one rotating and the other a t  rest with zero source flow, does 
not give a unique solution. 

The source flow of an in~om~r~ss ib le  second order fluid between two parallel disks, one rotating and 
the other at rest, has been investigated by Rajvanshi7. The constitutive equations of an inconlpressible 
second order fluid as suggested ' by Coleman & Nolla are : 

Aij = vi,j + vj,i, (2) 
and 

Bij = a i j  + aj,i + 2% i ~ m j .  (3) 
Where ~ , j  is the stress tensor ; g ~ ,  the metric tensor ; vi, the velocity vector ; ai. the acceleration vector ; p, 
the pressure ; $,, $?, $,, the fluid parameters and comma(,) denotes covariant differentiation. Rajvanshi7 
obtained the solution by expanding flow variables in powers of the radius vector. The functions in the 
series expansion haxe been determined for small Reynold number depending on the angular velocity of 
rotation of $he disk. 

In  the present paper the source, flow of the second order fluid, between two parallel coaxial disks 
rotating at different speeds, defined by (I), (2), and (3), has been investigated. Theseries expansion 
method of Kreith & Viviand" has been adopted in this paper to obtain the solution. We note that the 
solution for zero source -strength is not affected by the. non-Newtonian parameters qpto second order 
terms in Taylor number. But $he effect of ncn-Newtonian parameters is present in the higher order 
approximations. In particular, it has been observed that the non-Newtonian parameters are most effective 
in perturbation terms of radial velocity when the two disks rotate in opposite direction, and the least, 
when the disks rotate in same direction with equal velocity. 

- -  E Q U A T I O N S  O F  M O T I O N  

The momentum equation for the incompressible flow is 
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and 

Let us convert ( 1 )  to (5) into cylindrical polar coordinate system, and non-dimensionalise them by 
using (7). Substituting (9 )  to (12) in these non-dimensionalised equations and equating the coefficients of 
like powers of r ,  we obtain an infinite set of simulta;neous ordinary diEerentia1 equations. The first two 
systems are : 

It-2 = 2 ( 2 K + S ) [ f "', f "-1 + $"-I g'-l] . ClQ 

The differential equation for h,  is 

h', = - 4 f '-1 f-, - 2 f + 4 K [ f "'+ f-l + 11 f f + Re (f f "l + 
Y 9'1 9"-1 + $"I g'-l+ f "--1f" ' l)  1 + 2 S [ l 4 f  "-1 f '-1 + Re (Y",  9 ' 4 .  $. 

+ 9'1 9"-1 + f  "'-lf "1 + f  "- l f  '"1 I . , (16) 

Sysdem I I  
I 

f "'1 + 2 f-1 f "1 = h - 2 9-1 $1 + 2 K [ f  '-3 f '"I f f -1 fiiv + 2 $"-I 91 + 2.9'1 9'-1 + 
+ f"1 ff'-1 + f ' l  f'"-1 I + 2 S Gf'l-1 f'"-1 + g1$"'1 + f  "- l f  "I + 

+ f  ' - I f  '"1 -I- 2 g'-19; I 9 (17) 

9; + 2 $>f-, = 2 9 - I f ' ,  + 2 K I - 2 f  '1 9"-1 + 9'"lf-1 + 9 " l f  '-1 + g;f"-1 + 
+ g l f  -2f "1 g', I + 2 &I [ $ I f  '"-1 - 2 ' f  '1 $'-I - f '1 ,9"-1 + 

3-f'-1 3"l + ~ ' 1 f " - 1  I 7  (18) 

and h ' = O .  (19) 

The boundary conditions in the modified form are : 

f b ( = t : l ) = O ,  for r z= -  1, l7 3 . .,. 7 

fa ( & l ) = O ,  for - 1 3  ..., J 
(20) 

, 
f 1 ( 1 ) - f 1 ( - 1 ) = 2 -  (21) 

We choose f l ( - 1 )  = 0 7  / 

so that f d l )  = 2 .  (22) 

gs (A 1 )  = 0 ,  for s = 1 ,  3 ,  ... 
9-1 ( - 1 ) = g i and (23) 

9-I( + 1 )  =a. 

In the above equations the prime denotes the differential coeffioient with respect to x. The equation 
of continuity is identically satisfied by (9). 
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R E S U L T S  & D I S C U S S I O N  

System -f 
We take Taylor series expansion for f-,, g-, a11d F-, the following form : . 

f-, = ai2 Fll + 2 a2 F12 + up2 Fza + . . - 
g--, = g. GI,+ a2 G2 + a12 Gll 4- 2 a1 G12 +a2 Gza + . . . 1 

(34) 

h -2 - a12 Hll + 2 g a:, H12 + H2p + . . . 
We substitute (24) in the equations af system I .  On equating equal powers of g, a2, and their products, 
Mie obtain four sub-systems of differential equations. These are readily solvable and this solutions are : 

where 10 ( an ) rneaus terms of 0 ( a," ) or ( ) . We have also from (25) '\ 

4. 
f'- - - - 

1 - 240 ( z 2 - 1 )  [ 5 ( x 2 -  1 ) ( a 2 - a , ) 2  + 2 0 ( a z 2 - - a 2 ) z ]  f O ( a Q ) ,  (28) 

which agrees with Kreith & Viviand5. Hence forxero source strength, the flaw pattern remains unaffected 
by non-Newtqniqn fluid parameters npto second order terms in the Taylor number R i  (i = 1,2). It is sufficient 
to consider the value-of a ( := a,/a2 ) between - 1 and -t 1, since changing a into 11% gives the flow field 
upside down. These results are valid for small values of a, and a,. - 

Equation (25) shows that w is always positive if - 213 < or < 1, but changes sign once if - 1 ;< a < - 2/3, 
a . Kreih & Viviand5, have shown that the plane z 4 s  a stream at a value of z equal %o'O = 5 --- a-1  

which divides the flow field into two separate regions. The dividing stream surface, when it exjsts, 
rotate with the dimensionlees angular velocity a * = -- 3 a ,  ( a - 1 1 ) in the directian as the lower disk rotates. 
Since u is not zero at z 5 z*, the dividing rlane is not analogous to a solid disk. When a increases from - 1 
to ( - 213 ), ( a*/%, ) increases from 0 to + 1, whereas ( a*/a2 ) decieases from 0 to ( - 213). Casal9 pointed 
odt that for = 0, the series solution converges when ( a2 ] < 0.17. 

. S y s t m  I I  . , .  . 

We assume the Taylor series expansion for fl, g, and h in the form 

~ = ~ , + q l X l + ' d , X 2 + u ~ X , l + 2 ~ u l a ~ X l ~ + ~ 2 X ~ ~ +  ... (29) 
\ 

As the system possesses non-zero solution for a, = a2 = 0, the zero order terms in (99) have been 
included. 

By substitilting (24) and (29) in system I1 [ i.e. ecluations (17) to (19) 1, and equating like powers of 
Taylor numbers, we obtaip a set of ordinary linear differential equations connecting the functions assumed 
in (29). These equations llave*been scrlved using modified boundary conditions. The solution in the final . - 
form is : . * 
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. [ z5 -2z s+  e l ,  (30) 

1 
- ( 1 - ~ ~ ) [ 5 ( a ~ + a ~ ) ( ~ ~ - 5 )  + z ( a 2 - a l ) ( 3 z 2 - - 7 ) ]  + Y l  = 40 

+ ( K  + S . ) ( a l - - a , ) ( z - z 3 7  (31) 

and 

1 h =-  3-- 525 [ 263 ( a,2 + ) $494 a, or, - 3. 

4 8  
. ( K i - S )  ( 4 ( ~ , 2 + a 2 2 ) + 3 1 % ~ 2 ] 1  + -g- 

( K $ - S ) ( a 1 - a 2 ) 2 *  (32) 

If we put K = S = 0 in (30) to (32), these agree 
with the corresponding equations of Kreith $ Viviands. 
The effect of non-Newtonian parameters has been shown 
graphically on the perturbation term of, order a,a in f,'. 
In Fig. 1, [ ( flf - P", )/aZ2 1 X 10, has been plotted 
against z for a = 1 i.e. both the disks rotate in the same 
direction with same angular velocity. Thetcurves have 
been drawn for K = S = 0 (Newtoliian case) and K = 
-0.1, S = 0.~35. We note that the profiles are symme- 
trical about z = 0. The effect of non-Newtonian para- 
meter on [ ( f ', - p', )/a2, ] X lo2 is very small. Fig. 2 
gives the profles for (i) K = S = 0, (ii) K = - 0.1, 
S r 0.25 and (iii) K =- 0'1, S = 0.35 at  a=O, i.e. 
when the lower disk is stationary and upper sotates with 
given angular velocity. Inthis case, we note that the 
profle is not symmetrical about z = 0. The effect of 
non-Newtonian parameters is more marked in compari- 
son to the case a = 1. In Fig. 3, the profiles have been 
drawn for (i) K = S=0, (ii) K =-0.1, S = 0.25, and 
(iii) K = - 0.1, S = 0.35 at a = - 1, i.e. the two 
disks rotate in opposite directions with equal angular 

s = 0.35, K=-O. I velocities. The profiles are symmetrical about z = 0. 
(NON-NEWTONIAN) The effect of non-Newtonian parameters is more 

marked in comparison to a = 0 and 1. We infer that 
the effect of non-Newtonian parameters is most conspi- 
cuous when torsion of the fluid takes place. 

Fig. 1-Variation ~ f [ ( / ~ ~ P o ' ) / a ~ ]  x loa with z for a=l ,  
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Fig. 3-Variation of [(f :-Po')/asa) x loa with z for a=- 1. Fig. 6-Variation of ($?/a?) with z for p=O, 
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S T R E A M L I N E S  

The stream function $ is given by (10). This 
equation is rewritten in the following form : 

(G* =r*2f-l + fl + ..;. 
$* = $ Re where and r* = r  / Relf2. 

The functions f f  and fl are given by (25) and (30). 

The streamlines for K =-0.1  and S = 0 . 3  - 0 . 2  

have been shown in Fig. 4 for q = 0 and a, = - 0.2. 
It is of the same pattern as for Newtonian case. If we 
neglect the rotation perturbation term in f,', the - 0 . 4  

stream function t,b is then simply the sum of its value 
for case of zero source flow and for the case of fixed -o 
disks. In this case the effect of non-Newtonian fluid 
parameters upto a i 2  ( i = 1, 2 ) is absent in the 
stream function. Therefore the streamlines are o 
same form as drawn by Kreith & Viviand5. 

Big. 6-Variation of ( g,/a, ) with z fox a=-1. 

A N G U L A R  V E L O C I T Y  

Equations (12), (26) and (31) give the angular velocity 

where g, is given by (31). 

_ The angular velocity profile will differ very little from a linear profle and the dBerence will vanish as 
r increases, since a, is assumed < a. In Fig. 5 and 6, the effect of non-Newtonian parameters on ( g, / a2 ) 
for a = 0 and u = - 1, has been exhibited. Here also we note that the effect is more at  a = - 1 in 
comljarison with that at a = 0. It has been observed that the contribution of K and S  to ( g, /a2  ) is 
negligible at  a = 1. 

P R E S S U R  E D I S T R I B U T I O N  

The pressure can be obtained from (11) by neglecting the term of order R e / +  or smaller. Then 
pressure upto second order terms in a; ( i = 1, 2 ) is given by 
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+ z ( 1 - a )  ( 3 ~ 2 - 7 ) ) )  + ( I - $ )  ~ ~ ( 1 - a )  ( $ z ( a +  I ) +  \ 

\ i ' i 

+ ) ( I - c r ) ( 3 z 2 - 7 )  +3'~2(1--a))-20(~+~)(a-l)~(l-3z~)a,+ 

1  + 2 0 a 2 2 ( 1 - a ) z ( ( 1 - a )  .c ( 2 0 9  - 1 2 z ) +  ( 6 0 ~ - 2 0 )  ) ]  +const. (35) 

. The radial pressure distribution and the strength of the source are given by the first two terms k a 
function of the Taylor numbers for the upper and lower disks. The axial variation in pressure is given 
by the third term as a function of the axial distance from the centre plane. , 

The average normal force on the circular portion of the radius rl of the disk z, = I ,  is 

TI - , 
1  3 1  5 7 1  2  T ~ ( T ~ ; ) ~ =  dr =I 2a2p  l r 1 2 [ - 4  I {=( u 2 + 1 ) +  6"- s ( a - l ) 2 ) +  

0 

I 1  + 4 ~ ~ 2 ( l - a ) ~  -Re(21nr l -1 )  - 3 - - - ~ , ~ .  [ 525 

' 1  . ( 2 6 3 ( a 2 + 1 ) + 4 9 1 i r  > - - m ( K  + . S ) a 1 2 ( 4 ( d + l ) +  

4 
+ 3 1 a ) +  b a , 2 ( a - 1 ) 2 ( ~ + ~ ) 2 ]  } +Q, (36) 

where Q, is constant. 

Hence the disk z  =: 1  experiences suction br thrust according as 

[ 
1  

r 1 2 a 2 2 [ 9 a 2 - 3 8 a f  9 1 - 8 R B ( 2 1 % r l - 1 )  - 1 6 -  -----a: 105 . 
1  . ( 2 6 3 ( a 2 + 1 ) + 4 9 4 u ] -  w ( K  +S) a 2 2 ( 4 ( a 2 + 1 ) + 3 1 a ]  + 
< 80Q,a2e 

+ 4 a z 2 ( a - l ) 2 ( ~ + ~ ) 2 ]  > 41 (37) 
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