£

LAMINAR SOURCE FLOW OF SECOND ORDER FLUID BETWEEN TWO PARALLEL
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’ The laminar. source ﬂoW of second order fluid between two mﬁmte paraIlel dlSkS rota.tmg with different velocities has
been studied in this paper. The solution has been obtained by double series expansion about a known solution at a
large radius. The effect of non-Newtonian parameters has been dlscussed on velocity profiles for small rotational Taylor .
numbers of the disks.

Laminar source flow between two parallel dlSkS rotatlng at the same speed, has heen investigated by
Breitner & Pchlhausen! and Kreith & Peube® 3. Pelech & Shapiro* have obtained an approximate -
~ first order solution when one disk is rotating and.the .other is stationery as a byproduct of
an investigation of the deflection of a rotating magnetic recording device. Kreith- & Viviands
considered axisymmetric flow between two disks, rotating at different angular velocities with a source at
the centre. The Reynolds number Re based on source strength and the Taylor numbers o; (7=1,2) associat-
ed with angular velocity of each disk, are all assumed to be small. The problem is solved by expanding -
the flow variables in powers of Re about a known solution. This solution is also represented in a series ex-.
pansion with «; as perturbation parameter. The results are valid for small values of «; and at a distance
7 > Rel”2/u; . Recently it has been shown by Mellor® et al., that the steady flow of a viscous incompres-
sible fluid between two coaxial infinite disks, one rotating and the other at rest with zero source ﬂow does
not give a unique solution.

The source flow of an mcompress1b1e second order fluid between two parallel disks, one rotating and
the other at rest, has been investigated by Rajvanshi’. The constitutive equations of an incompressible
- second order fluid as sugge%ed by Coleman & Noll® are :

T = — pgij+ ¢y + ¢2 Bij + 5 diw Arj, o 1.
’ 4y = vij + v ' o (2)

and o T :
B@] = Q4,; 4 @ji + 20m 5 Unm, jo (3).

Where 7;; is the stress tensor gi;, the metric tensor; v;, the velocity vector; a;, the acceleration vector ; p,
the pressure ; ¢y, ¢y, b3, the ﬂuld parameters and comma( ) denotes covariant differentiation. Ra]vansh17
“obtained the solution by expanding flow variables in powers of the radius vector. The functions in the
series expansion have been determined for small Reynold number depending en the angular velocity of
rotation of the disk. '

In the present paper the source flow of the second order fluid, between two parallel coaxial disks
rotating at different speeds, defined by (1), (2), and (3); has been 1nvest1gated The series expansion
method of Kreith & Viviand? has been adopted in this paper to obtain the solution. We note that the
solution for zero source strength is not affected by the non-Newtonian parameters upto second order
terms in Taylor number. But the effect of ncn-Newtonian parameters is present in the higher order
approximations. In particular, it has been observed that the non-Newtonian parameters are most effective
in perturbation terms of radial velocity when the two disks rotate in oppos1te dlrectlon, and the least,
when the disks rotate in same direction with equal velocity.

EQUATIONS OF MOTION

The momentum .equdtioi; for the incompressible. flow is.

PV Yo = Tifi ’ T ‘ (3]
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and the equation of céntinuity is o yy ,
* We shall use polar cylindrical coordinates ( 7,0, z) in the following dlscussmn The flow takes place between

two parallel disksz = + ¢ andz = —a. Let the upper and lower disks rotate at angular velocities -
wg and wy: respectlvely The volumetric flow rate of the source (Strength) is to be assumed as Q.

" Therefore the boundary condltlons become '

;’ ; == = )
;), 7 = + a; = (6)
L. Lo "
Let us introduce the following non-dimensional quantities K
r=1rla, ;=%;/a, ‘ -
p;a "p';a‘ o p‘t;ae
= - V = w = —
“ ¢ i ¢’ ¢ P T
| - o _P1_9“2 ’ _¢2 B ¢3
S =g o Esna S=na
Equatlons (6) a,nd (7) now give the boundary condltlons in the following form
‘ wo=w =20 a,tz‘_.:]:1 M
+1 | . |
udz = 2 p ¢ y v - ‘
—_1 : e : 8)
'v,=’oc1‘r‘ abz = — 1, ' '
v—wr sz =+41
. where / D
‘Re (Reynolds number) = _Qp
‘ yn : 4 e &y ’
‘ ‘ . a
bcl (Taylor number for lower disk) = —w—l—';——i ;.
" )
Cwe G2 p
o2 (Taylor number for upper dlsk) = ‘%—’—’-’ .
‘ 1
Let us define a stream functmn t,b as .
' 1 o 1 ¥ o
=Ty T ? w=—=r5 ar (9

Following Kreith & V1v1a.nd5 the solution, which i is valid for large values of 7/Rel/2, is assumed in the
following form :

T . o
P __rzk_z(z)-l—ko(z)—l—Re {h () Inr+ ——hz(z)+ } (11)‘

o
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and.

k , Rell '
= 79y (2) + Re 12 { g1 (2) + 93 (z)—l— } .

Let us convert (1) to (5) into cylindrical polar coordinate system and non-d1menswnahse them by
using (7). Substituting (9) to (12) in these non-dimensionalised equations and equa.tmg the coefficients of
like powers of #, we obtain an infinite set of s1multaneous ordinary differential equations. The first two

gystems are :
System I : . N
| FU a2 faf = = 2 h;—'z ~ 9 +K [f—lfw —2f" 41 +
X ' ‘ + 8 [ g'rzf«l - 2f”2-—1 +2f' ”'——1
tq”——l +2f4 9"—-1 —294f 4 =K[2f 19" 41— 2]”—19*1] +
+‘S[2f—1,9 —1_'2f 19 1]
\ h—2—2(2K+S)[f"'—1f”;1+9—1g-—1]
The differential equatlon for hy is
k . 4]1-;—1)(-_1 — 2f11~1 + 4 K [f”,—-lf—l + 11 fl,»;lf,—l + RB (f”’—lf”

49192 +949— +1af")] +2S[14f”—1f'~—1 +R3(9 19— +
+919 = ~I—f”'—-if +f 01 :

- Sysbem i

”'1+2f—1f”1—h“29—191+2K[f—1f"'1 +f—1f1‘"+29—191+2919—1+
+f” f”—-1 + f'”—1] +2S[f1—-1f,”—1 +91 - +f”—1f +

‘ +f' '”1’+29—191]=
9+ 291f1=2941" +2K[—‘2f'1g—-1+9 "+ IS a9+
+91f'”—-1’—2f”19—1]+ZS[91fm ”'zlf'19'—1—f'19‘”—1+
: +f'—131+91 1]’ ’

and - o K =0.
Thebboundary conditions in the modified .fo‘rm‘are_:
Fa(1)=0, for n=—11,3..., ‘L
fa (£1)=0, for n=—1,3 ...; J
A —fi(—1)=2.
We choose , - fi(—=1)y=0, 7
so that o fi(ly =2.

gs(:{:',l),=0,' for s=1,3,..
g_l(-—l)—_-ocl;.and ’
ga(+1) =0z

In the above equations the prime denotes the differential coeﬂiclent w1th respect to 2. The equatlon

of contmulty is identically satisfied by (9).

(12)

(13)

(14)
(16)

(6)

1)

(18)

(19)

.

(21)

(22)

(23)
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RE‘SU“,I;T s“& DiSiC,USS ION
System [ LR : :
We také Taylor series ex-pansionr fdrf;i, ’g)_,l and b_, in the follbwing‘ fo‘1'nil:
“ f—-l=“leilvT‘*2°‘1°ﬁ2F12+“?2F22+'-'-  / ;
gq =0y G1’+ oy Gy -+ 02 Gy + 20y ds Gy o? Goy + ... & (24)
‘ k;’2 = oy Hy + 2 05 oy Hyp + ag® Hyp +- ..

- We substitute (24) in the eqﬂations of system I. On equating equal powers of o, as, and their products,
we obtain four sub-systems: of differential equations. These are readily solvable and the solutions are :

Joa=— 340 (z? j—'l )2 [‘m,_2 { 2= 1 )7—_ 2“1 Oy 2 + w2 (2 +5 ‘) 1+ 0(@4 )”, (25)

gt B T B

f,'h_'2%‘ ,"2—6‘\(“1 + e?) + '5"“1\“2‘4‘, (at), LA , : . - (2T)
where /O (o) - meaus terms ‘of « 0 (_“1” ) or (o;z” )« We have also from (25) - - SN
= 540 (22— 1‘) [6(#==1)(ag—0;)*+20( “2?*# u?)2l 40 (at), {28}

which agrees with Kreith & Viviand®. Hence for:zero source sttength, the flow pattern remains unaffected
. by non-Newtonian fluid parameters upto second order terms in the Taylor number o; (i = 1, 2). It is sufficient
to consider the value-of « ( = o;/as ) between — 1 and - 1, since changing « into 1/« gives the flow field
upside down. These results are valid for small values of «; and «,. goe

g Equatidn (25) shows that w is always p'osit'iy;e if—2 / 3 < ocb< 1, but changes sign once if — 1 << o0 << —2/3,
+1 '

at a value of z equal toz* = 5 %:T . Kreith & Viviand3, have shown that the'plane’z =: 2% is a stream
surface which divides the flow field into two separate regions. The dividing stream surface, when it exists,
rotate with the dimensionless angular velocity & * = —2 «, (& -+ 1) in the direction as the lower disk rotates.
Since « is not zero at z = z*, the dividing plane is not analogous to a solid disk. When « increases from — 1
to (—2/3), (o¥/o; ) increases from 0 to -+ 1, whereas (a*/xy) decreases from 0 to ( — 2/3). Casal® pointed

out that for &; =0, the series solution converges when | ag | < 0-17. S

System 11 o :
B We assume the Taylor s:erieé e)ipansio'n' for f;, g, ‘and % in the form ‘ ’
- X=Xy X X g N o 20w Ky kot Ko @
, As the syétem possesses NON-Zero solution féx °‘i~= ozzﬂ'—'-:’ 0, the zero order terms in (29) havé been
" included. . . :

By SubStitL1ting (24) and (29)\ in systém 11 Ef.e. equations (17) to (19)], and equating like powérs of
Taylor numbers, we obtain a set of ordinary linear differential equations connecting the functions assumed
in (29). These equations havebeen solved lising modified boundary conditions. - The solution in the final

form is : : ‘ ‘
2 b6 1042

1 814 A e (2 [_1_/9__.7_______5
fi = —2—~[2+3z——z]+ 1190 (o +“? ) 9z ‘5kz_ B Z + 45 2
SR 1 s 2 L s 88 :
"“3’2]+_‘11—2(T(?‘17*°‘2)[ L R
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1,1 1 18 49 a9 41 ]
U T e B TR B T R i R A I Bl

L \ 1 . 93 917 131 -
g (K)ot 4ea®) | =7 # b 35 #— T gop e | +

S o e |
g (K S) (e — o) [~ B 182 T ] s (K4 S).

. oclocz[—~24z7———4:29—z5—f—7121z3— 1;5, z} +—11()—(K+S)2'('u1+a2)2.;

[28—228J-2], N P G | : e (30) |

= z()—'(l—zz)[5(0€1+0€2)(z2—5)—-]—Z(OL2—-O£1)(3Z2——-7)]+ .
+(I‘VC+S.)(oc1—oc2)(z——-z3) | : | . o - (31)

' ' and ' ' o
\ h =—3’-——-—575- ['263(m1?+a22)+494oc1§12;- 3.‘
Y 4
{A~(K+S) {4(a® +o?) + 8l }] T 5 -

(K +8) (g —ag )2« : - (82)
. If we put K = S = 0 in (30) to (32), these agree
Kes=0d with the corresponding equations of Kreith & Viviands.
(NEWTONIAN) The effect of non-Newtonian parameters has been shown
:  graphically on the perturbation term of order a,? in f,’.
In Fig. 1, [ (fy'— P’y )[as2] X 10* has been plotted
against 2z for o = 1 i.e. both the disksrotate in the same
direction with same angular velocity. The curves have
been drawn for K = 8 = 0 (Newtonian case) and K —
—0°1, S = 0-35. We note that the profiles are symme-
. 4 trical about z = 0. The effect of non-Newtonian. para-
meter on [ (f'y — 9’ )/a? ] X 102 is very small. Fig. 2

0.4+

-2 ‘o
(B [z 1x 1O

8 =025 and (iii) K =—0'1, § =035 at a=0, i.e.
* when the lower diskis stationary and upper sotates with
given angular velocity. Inthis case, we note that the
profile is not symmetrical about 2z = 0. The éffect of
non-Newtonian parameters is more marked in compari-
son to the case @ = 1. In Fig. 3, theprofiles have been
drawn for (i) K = S=0, (ii) K =—0-1, 8 = 0-25, and
(i) K =—0-1,8 =035 ataw =—1, ie. the two
disks rotate in opposite directions with equal angular -
\  velocities. The profiles are symmetrical about'z = 0.
) The effect of non-Newtonian parameters is more
7/ marked in comparison to « = 0 and 1. We infer that
the effect of non-Newtonian parameters is most conspi-
cuous when torsion of the fluid takes place.

- Qs

§=0.35, K=-0.1
. (NON-NEWTONIAN)
-0 8- '

-!.Q— )
 Fig, 1—Variation of{(f,’~Po"}a,31x 10° with z for a=1,

gives the profiles for (i) K =8 =0, (i) K =—0'1, "
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 Fig. 3—Variation of [(f,"—Po’)/a;?) X 10° with z for g=—1,

-0 64
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-0-.27

-0.44

S

4

..-l.d‘

Fig. 4-——Stream lines for a==0, K = —0'1 & 8=0 3.
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o)

;.f_. K=$§=0Q
(NEWTONIAN)

=0.2-

~0.47

—o'is.

-0.84

-1.0

$20.35, K2-0.}
{NON=NEWTONIAN)

§20.25, K= ~0.1-
(NON-~NEWTONIAN)

- Fig. 5—Variation of (gy/a,) with z for g=0,
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STREAMLINES . ~
: N
- 8 }
The stream function  is given by (10). This J
~ equation is rewritten in the following form : ' Jtae
. 06
.* = *2 oo ’ 4 Kz v= )
¥ f fath ;+ ’ » (33). Po 4 f,i,(NE';ITsONIoAN)
where Yy* = [Re and r* =r| Rell2 b '
' 0.2
The functions f_, and f, are given by (25) and (30).

e

- R : P
The streamlines for K = — 0:1 and 8 =03 -g.2] Bt ,_2')
have been shown in Fig. 4 for o; = 0 and oy = —0-2. .
It is of the same pattern as for Newtonian case. If we L :
neglect the rotation perturbation term in f,', the ~©471 = s:o0.25,kz041 i
. stream function ¢ is then simply the sum of its value (NON-NEWTONIAN) .~
for case of zero source flow and for the case of fixed _ 6 -
disks. In this case the effect of non-Newtonian fluid - : -
parameters upto o2 (¢ =1, 2) is absent in the - ,
stream function. Therefore the streamlines are of the -o0.8{ [/ $20.35, K= -0-1
same form as drawn by Kreith & Viviand®. , : \\*\\\ (NON -NEWTONIAN)
~1.04 =

‘ F\ig. 6—Variation of ( g,/e, ) with z for a=—1,
ANGULAR VELOCITY

Equations (12), (26) and (31) give the angular velocity

v 1 —a 1+« Re

roag 2 ‘z + 9 -+ ) (9:/ %), (34)

where g, is given by (31).

_The angular velacity profile will differ very little from & linear profile and the difference will vanish as
7 increases, since ¢, is assumed << . In Fig. b and 6, the effect of non-Newtonian parameters on (91/23)
for « =0 and « =-—1, has been exhibited. Here also we note that the effect is more at « = — 1 in
comparison with that at « = 0. It has been observed that the contribution of K and S to (g, /ay) is
negligible at « = 1. , ' '

PRESSURE DISTRIBUTION

The pressure can be obtained from (11) by neglecting the term of order Re /F or smaller. Then
pressure upto second order terms in «; (¢ = 1, 2 ) is given by :

2 .2 : R
p = rzg2 [3(oc2—l—1)+4oc]—Reln’r[{3—I—a22?63(a2—;2?+594a}+

1 4 :
+ “gmop @ (E+8) (@ +1) 4 Tba— ?azz(oc——l)?(K+S)z] +
+ % d22(z2—1){(5z2.51)(‘1__0()2_‘20(1‘__“2)z}+

+ o BGEHS) [—rat(1—a){5(#5) («t 1) 4

a3
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+ z(l—on (3z2—-7)} + ( 1—z21 ,&‘225(‘1’*—’«) {Bz(at+1)+
+ (1 i ) (322 — 7) + 3z2«,( 1-;a~)} ‘——’20(K+S~) (e —1P(1—322)o, +

+ %aﬁ( 1—a)z (1-—0() (2Oz3 —12z)—]— (60z-—-20) }} 4 const. (35)
~ The radial pressure d1str1but1on and the strength of the- source are given by the first two terms as a
function of the Taylor numbers for the upper and lower disks.  The axial variation in pressure is glven

by the third term as a functmn of the a.x1a,l distance from the centre plane.

" The avemge normal»force on the cn'cular portion of the radius v, of the diskz.='1,is .

. 3 15
'7”.1 J‘2rr('rz~)~=1d7'— ﬁ;p, {712[——0;22-{ % (a?-/.}.1)-},-..—‘5—9;&—‘—‘5(0(—17).2}—{-

ot ial (1—a>2] Re(20m—1) —-[éii5—§ga2

. 4 263 ¢2’+ 1) + 49%0 }”—- e (K +8) oc22 {4 (m2+ 1) 4+

*31“}+ —“zz(oc—W(KJrS)z] '+Qo' 39
where Qo is constant : ' :

Hence the disk z = 1 experlences suction br thrust accordmg as

712"“22[9“2*'38“+9]—"8Ré(2;l"7‘1—1) [‘;}5— :,1(1)t’>"oca2

.'{263(0& +1) 44940} — —-1—(K +8) a2 {4 (e +1) —]—3111} +

80Q,afp | 1
+4a2(a—~1)2(K+8)2]§——%11—p-". E (37)
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