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The problem of heat transfer for the steady axi-symmetrical laminar source flow of a slightly rarefied electri- 
cally conducting gas between two infinite parallel circular disks under transverse magnetic field is analytically 
investigated where both Joulean and viscous heating are considered. The flow parameters and the temperature are 
expanded in powers of llr. The quantity of heat transfer per unit time from a finite dlsk has been calculated. 
It is found that with the increase of magnetic field, the rate of heat transfer from the lower disk decreases and 
increases from the upper disk. The maximum temperature increases with the increase of the magnetic field. The 
rate of heat transfer from both the disks as well as the maximum temperature decreases with the increase of the 
rarefication of thegas. 

Low density gas partially loses its continuum characteristics and becomes rarefied. These rarefication 
effects are approximated by a slip of the fluid over the solid wall and a temperature jump1. When the gas 
is only slightly rarefied the flow regime is termed as 'Slip-flow' and in this regime the gas density is just 
slightly less than that characteristic of a completely continuum2 and it is usually analyzed by applying 
continuum approach together with modified boundary conditions for velocity slip and temperature jump3. 

The steady axi-symmetric laminar source flow of a slightly rarefied electrically conducting gas between 
two infinite parallel circular disks in presence of a transverse magnetic field HO has been discussed by 
Khader, Goodling and Vachon4. The case of classical flow (MHD with no-rarefication) of the present 
problem was numerically solved by Khader and others5 with constant disk temperature (same for both the 
disks) by neglecting terms of order higher than the first negative power of r. In the present investiga- 
,tion the energy equation is solved analytically, where both Joulean and viscous heating are included, when 
the upper and lower disks are maintained at two constant temperature TI* and T2* (Tz* > TI*) res- 
pectively. The effect of rarefication has 5een taken into account by considering velocity slip and tempera- 
ture jump at the solid boundaries. A source of volumetric flow rate Q has been assumed at the centre of 
the upper disk (Fig. 1) and the temperature has been expanded in powers of Ilr and solution holds good - - 

ro* * 
between r = --i- and r = $ . No local heat transfer coefficient but total one is measured and yet this is 

L & 

useful enough to clarify the effect of magnetic field as well as rarefication of the gas. The rate of total heat 
transfer per unit time from both the disks have been plotted (Fig. 2 & 3) against M for fixeda. The effect 
of M and E on maximum temperature has been shown in Fig. 4. 
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Fig. 1-Configuration and co-ordinate system. 
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Fig. &xl against M (upper disk). 
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Fig. 3-X, against M (lower disk). Fig. 4-4, (max) against M. 

The Knudsen number and the magnetic Reynolds number are considered to be small for applying 
continuum approach and to neglect induced magnetic field. The magnetic pressure number is considered of 
the order of unity. The assumption that the fluid is incompressible is a fairly valid approximation atleast 
for low Mach number flows. , 

I 

H E A T  T R A N S F E B  A N A L Y S I S  

Consider a steady source flow of volumetric flow rate Q of.low density, electrically conducting fluid 
between two non-conducting disks at z* = ;t I at two constant temperature TI* and T2*, (T2* > TI*) 
respectively (Fig. 1). The radius of the hole is r,* and that of the disk is b*. We considered the velocity 
and the temperature distributi n between the two disks, r* = r,,* and r* = b*. At any point of the 
fluid, let T* be the temperaturl u* and w* be the radial and the axial velocity components. &* be the 
applied magnetic field in the direction of z*. We define the following dimensionless quantities. 

u* l2 
u = -  

w* Z 2  r* z* I* - 1;" 
Q " = -  I ' e =  Z Y  z = -  Q r = -  r2* - r l*  (1) 

First order velocity slip and temperature jump boundary conditions after neglecting thermal creep are 
given by3 

and 

where 

f is the Maxwell's reflection coefficient, g is the Maxwell's thermal accommodation coefficient, h is 
the mean free path, Pr is the Prandtl number, y is the ratio of the specific heat coefficient. Parameters 
E, and e2 are known as velocity-slip and temperature jump coefficients and EL = €2 (= E )  for all practical 
purpose6. 

The expressions for the velocity components have been calculated by Khader and others by expanding 
1 

them in powers of - , as \ 
r 

rn ' r n  
1 1 

(5)  
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The induced magnetic field components of Hz* is taken to be zero under the condition of small 
magnetic Reynolds number ( R ,  << 1) and Hz* is approximated by Ho. 

The energy equation governing the distribution of temperature in the cylindrical coordinate system 
for an axi-symmetric steady motion in dimensionless variable is 

where M =  ' m H O  ' , is the Hartmann number, Re = Qlvl, is the source Reynolds number, 
d ( 6 S l a )  

Pr = vC,lpk, is the Prandtl number, E = Q21Cp(Tz* - TI*) 14, is the Eckert number, p m  is the 
magnetic permeability, a is the electrical conductivity of the fluid, p = density, v = coefficient of viscosity, 
k = thermometric conductivity and Cp = specific heat at constant pressure. 

1 
We confine ourselves for the series upto 4th power of 7 and with this approximation the equation 

1 
(6) has been solved by expanding u, w and 9 in powers of 7 and taking 

0 

the boundary conditions (3) can be written as 
0,=-ell,', a t z = + l , f o r  ~ = 0 , 1 , 2 , .  . . . . . 
00=1+~9, , ' ,  at z = - 1  (a) 
9, = E On), at z = - 1  for n , = 1 , 2 , 3 , .  . .,. . . 

where a prime denotes the differentiation w.r. to z. 
We start the series of 9 from n=O to take into account the effect of conduction. Substituting (5) and 

1 
(7) in (6) and equating like powers of we get a set of ordinary differential equations. 

taking F, and Gn as given by4 and solving (9) under boundary conditions (8), we get 

where 

0, = 0, .= 0 (13) 
The expression for 94 has been 'calculated and found that the inclusion of 94 in temperature distribu- 

tion has negligible effect and so we have dropped O4 from the expression of 94. Also for large values of 
r i.e. r >> 1, one can neglect terms of order higher than the first negative power of r. 
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D I S C U  S S I O J N  

The heat flux from the disks z = + 1 and z = - 1 in slip flow due to boundary conditions are 

and 

Neglecting edge effects, the rate of total heat transfer per unit time from the circular disks from r* = r,* 
and r* = b* are given by 

b* 
1 r 

xl* = ( @ 2  r t 2  J 2 n r* ql* dr* 
ro* , 

and 

* - 2 n r* q2* dr* 

TO* 

or 

N 

where E = l 2  EPr log (b*/ro*)/8n2 (6*2 - v ,*~) ,  a dimensionless number. 

The maximum temperature occurs at z=O?and d2 (max) is given by 

9, (max) = - 

The rate of total heat transfer x1 and x2 have been plotted against M (Fig. 2 & 3) for E = 0.1 and 
for fixed e. The graphs reveal that xz decreases whereas xl increases with the increase of M for flxed 
value of E. Both XI and ~2 decreases with the increase of E. . 

The function go represents the usual radiation temperature which increases with the increase of 
slip coefficient (E), but is independent of Hartmann number (M). The function d2 represents the temperature 
due to convection and 82 (max) has been plotted against M(Fig. 4). The maximum temperature occurs at 
the middle of the channel and increases with the increase of M, but decreases with the increase of E. 

A C K N O W L E D G E M E N T  

One of the authors (R. Karmakar), wishes to thank the university Grants Commission, New Delhi, for 
giving research fellowship. 

R E F E R E N C E S  

1. LIPMANN, H. W. & ROSHKE, A., 'Elements of Gas Dynamics' (John Wiley and Sons, Tnc.) , 1956, p. 376. 
2. SCHAFF, S. A. & ~ H A M B R E ,  P. L., 'Flow of Rarefied Gases' (Princeton University Press), 1961, p. 25. 
3. KENNARD, E. H., Kinetic Theory of Gases' (Allied Pacific Pvt. Ltd.), 1962, p. 291. 
4. KHADER, M. S., ~OODLINCI, J. S. & VACHON, R. J., Appl. Sci. Res., 56 (1974), 127. 
5. KHADER, M. S. & VACHON, R. I., AppI Sci. Res., 29 (1974), 321. 
6. KAWAMATA, S., Trans. Japm SOC. .4ero cindSpnceSci., 4 (1961), 12. 

116 

, 


