ON ATHAINMENT OF CONSTANT PRESSURE IN AN H/L GUN WITH MODDERATED CHARGES

R. N. Bhattacharyya
Maharaja Monindra Chandra College, Caloutta
(Received 25 October 1972)

It has been shown that suitable moderated charge with two components can be found such that the pressures in both the first and second chamber in an H / L gun remain absolutely constant during the period the second component burns, the constant pressures being equal to the pressures at burnt of the first component.

The internal ballistics of high-low pressure gun was discussed by Kapur ${ }^{1}$ and Aggarwal ${ }^{2}$ for the general form function. In the present paper the author has discussed the problem of H / L gun with moderated charges having two components and has demonstrated that if a moderated charge of two components fof which first component is known and the second component is also known except for the size and shape) burns in an H/L gun, pressures in both the chambers can be kept constant during the period of burning of the second component. Generally the solution determines two relations between the four characteristics of the second propellant component of which two may be known from the physical properties of the propellant so that the other two may be calculated. Also the internal ballistics is calculated when the pressures are constant.

The ballistic equations in the nox-isothermal model, when the first component of the moderated charge is burning in an H / L gun, are the following.

The equations of state for the gases in the first and second chamber are :

$$
\begin{equation*}
\boldsymbol{P}\left[U_{1}-\frac{C_{1}}{\delta_{1}}-\frac{C_{2}}{\delta_{2}}+\frac{C_{1}}{\delta_{1}} \phi_{1}-\left(C_{1}+C_{2}\right) N \eta\right]=\left(C_{1}+C_{2}\right) N \hbar T_{1} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{2}\left[U_{2}+A x-C_{1} \phi_{1} \eta+\left(C_{1}+C_{2}\right) N \eta\right]=\left[C_{1} \phi_{1}-\left(C_{1}+C_{2}\right) N\right] R T_{2} \tag{2}
\end{equation*}
$$

where N is the fraction of the total charge turned into gas.
The equation of continuity (when $\omega<\omega^{*}$) is

$$
\begin{equation*}
\left(C_{1}+C_{2}\right) \frac{d N}{d t}=C_{1} \frac{d \phi_{1}}{d t}-\frac{\psi S P_{1}}{\sqrt{R T_{1}}} \tag{3}
\end{equation*}
$$

where

$$
\psi=\left(\frac{2 r}{r-1}\right)^{\frac{1}{2}}
$$

we take the law of burning and form function as

$$
\begin{equation*}
D_{1} \frac{d f_{1}}{d t}=-\beta_{1} P_{1} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi_{1}=\left(1-f_{1}\right)\left(1+\theta_{1} f_{1}\right) \tag{5}
\end{equation*}
$$

The equations of Energy ${ }^{1}$ for the first and second chamber are :

$$
\begin{equation*}
\frac{d}{d \mathrm{t}}\left[\left(C_{1}+C_{2}\right) N T_{1}\right]=T_{0} C_{1} \frac{d \phi_{1}}{d t}-, T_{1} \frac{d}{d t}\left[C_{1} \phi_{1}-\left(C_{1}+C_{2}\right) N\right] \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t}\left[\left\{C_{1} \phi_{1}-\left(C_{1}+C_{2}\right) N\right\} T_{2}\right]=r T_{1} \frac{d}{d t}\left[C_{1} \phi_{1}-\left(C_{1}+C_{2}\right) N\right] \tag{7}
\end{equation*}
$$

The equation of motion of the shot is given by

$$
\begin{equation*}
W \frac{d v}{d t}=A P_{2} \tag{8}
\end{equation*}
$$

These equations are solved with initial condition. We suppose that this solution gives $P_{1}=P_{1 B 1}, P_{2}=$ $P_{2 B 1}, T_{1}=T_{1 B 1}, T_{2}=T_{2 B 1}, N=N_{B 1}, v=v_{1 B}$, and $x=x_{B 1}$ when $\phi_{1}=1$ i.e. $f_{1}=0$. For integrations of equations during the second stage of burning; we will require the above quantities at the instant when the first component burns out. Here also we note that for solving the above equations suppose that C_{2} and δ_{2} (or $\mathrm{O}_{2} / \delta_{2}$) are known.

Ballistic equations when the second component burns.
The equations of state for the gases in the first and the second chamber are :

$$
\begin{equation*}
P_{1}\left[U_{1}-\frac{O_{2}}{\delta_{2}}+\frac{C_{2}}{\delta_{2}} \phi_{2}-\left(C_{1}+C_{2}\right) N \eta=\left(C_{1}+C_{2}\right) N R T_{1}\right. \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{P}_{2}\left[U_{2}+A x-\left(C_{1}+C_{2} \phi_{2}\right) \eta+\left(C_{1}+C_{2}\right) N \eta\right]=\left[C_{1}+C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right] R T_{2} \tag{10}
\end{equation*}
$$

The equation of continuity (when $\omega<\omega^{*}$) is

$$
\begin{equation*}
\left(O_{1}+C_{2}\right) \frac{d N}{d t}=C_{2} \frac{d \phi_{2}}{d t}-\frac{\psi S P_{i}}{\sqrt{R} T_{1}} \tag{11}
\end{equation*}
$$

Farther we have the equation of burning as

$$
\begin{equation*}
D_{2} \frac{d f_{2}}{d t}=-\beta_{2} P_{1} \tag{12}
\end{equation*}
$$

the form function as

$$
\begin{equation*}
\phi_{2}=\left(1-f_{2}\right)\left(1+\theta_{2} f_{2}\right) \tag{13}
\end{equation*}
$$

and the equations of energy for the first and second chamber as

$$
\begin{equation*}
\frac{d}{d t}\left[\left(C_{1}+C_{2}\right) N T_{1}\right]=T_{0} C_{2} \frac{d \phi_{2}}{d t}-r T_{1} \frac{d}{d t}\left[C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right] \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d}{d t}\left[\left\{C_{1}+C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right\} T_{2}\right]=r T_{1} \frac{d}{d i}\left[C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right] \tag{15}
\end{equation*}
$$

The equation of motion is

$$
\begin{equation*}
W \frac{d v}{d t}=A P_{2} \tag{16}
\end{equation*}
$$

We are to obtain the solution of these equations with initial conditions $x=x_{B 1}, \quad v=v_{B 1}, \quad P_{1}=P_{1 B 1}$, $P_{2}=P_{2 B 1}, \quad T_{1}=T_{1 B 1}, T_{2}=T_{2 B 1} \quad$ and $\quad N=N_{B 1} \quad$ at $f_{2}=1$.

Here $x_{B 1}, v_{B 1}, P_{1 B 1}, P_{2 B 1}, T_{1 B 1}, T_{2 B 1}$ and $N_{B 1}$ are the values of $x, v, P_{1}, P_{2}, T_{1}, T_{2}$ and N when the first component has just burnt out.

Let us assume that the solutions of the above equations are possible when.

$$
\begin{equation*}
P_{3}=P_{1 B 1} \text { and } P_{2}=P_{2 B 1} \tag{17}
\end{equation*}
$$

and seek conditions so that this solution may give $x=x_{B 1}, v=v_{B 1}, N=N_{B 1}, T_{1}=T_{1 B}$ and $T_{2}=T_{2 B 1}$ at $f_{2}=1$ and the system of (9) to (16) may remain consistent for the solutions $P_{1}=P_{1 B 1}$ and $P_{2}=P_{2 B 1}$ with the (17), (12) and (16), we have

$$
\begin{equation*}
\frac{d v}{d f_{2}}=-\frac{A}{W} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B 1}}{P_{1 E 1}} \tag{18}
\end{equation*}
$$

or

$$
\frac{d}{d f_{2}}\left(\frac{d f_{2}}{d t}, \frac{d x}{d f_{2}}\right)=-\frac{A}{W} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B 1}}{P_{1 B 1}}
$$

Which by (12) and (17) reduces to

$$
\begin{equation*}
\frac{d^{2} x}{d f_{2}{ }^{2}}=\frac{A D_{2}{ }^{2}}{\beta_{2}{ }^{2} \omega P_{1 B 1}} \cdot \frac{P_{2 B 1}}{P_{1 B 1}} \tag{19}
\end{equation*}
$$

Integrating (18) with the condition $v=v_{B 1}$ at $f_{2}=1$, we have

$$
\begin{equation*}
v=v_{B 1}+\frac{A}{W} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B 1}}{P_{1 B 1}}\left(1-f_{2}\right) \tag{20}
\end{equation*}
$$

Now we impose the conditions that (9) and (10) with (17) gives

$$
x=x_{B 1}, T_{1}=T_{1 B 1}, T_{2}=T_{2 B 1} \text { and } N=N_{B 1} \text { at } f_{2}=1
$$

and further that (9) and (10) are consistent with (19).
Now $x=x_{B 1}, T_{2}=T_{2_{B 1}}, N=N_{B 1}$ will satisfy (10), if

$$
\begin{equation*}
P_{2 B 1}\left[U_{2}+A x_{B 1}-C_{1} \eta+\left(C_{1}+C_{2}\right) N_{B 1} \eta\right]=\left[C_{1}-\left(C_{1}+C_{2}\right) N_{\dot{B 1}}\right] R T_{2 B 1} \tag{21}
\end{equation*}
$$

which is true boczuse (21) is obtained from (2) by considering values when the first component burns out. Also $N=N_{B 1}$ and $T_{1}=T_{1 B 1}$ will satisfy (9), if

$$
\begin{equation*}
P_{1 B 1}\left[U_{1}-\frac{C_{2}}{\delta_{2}}-\left(C_{1}+C_{2}, N_{B 1} \eta\right]=\left(C_{1}+C_{2}\right) N_{B 1} R T_{1 B 1}\right. \tag{22}
\end{equation*}
$$

which is true brcause (22) is obtained from (1) by considering values when the first component burns out.
With the help of (12), equations (11), (14), and (15) can be written as

$$
\begin{gather*}
\left(C_{1}+C_{2}\right) \frac{d N}{d f_{2}}=C_{2} \frac{d \phi_{2}}{d f_{2}}+\frac{D_{2}}{\beta_{2}} \frac{\psi S}{\sqrt{R T_{1}}} \tag{23}\\
\frac{d}{d f_{2}}\left[\left(C_{1}+C_{2}\right) N T_{1}\right]=T_{0} C_{2} \frac{d \phi_{2}}{d f_{2}}-r T_{1} \frac{d}{d f_{2}}\left[C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right] \tag{24}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{d}{d f_{2}}\left[\left\{C_{1}+C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right\} T_{2}\right]=r T_{1} \frac{d}{d f_{2}}\left[C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right] \tag{25}
\end{equation*}
$$

From (24) and (25) by integration, we get

$$
\begin{align*}
& \left\{C_{1}+C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right\} T_{2}+\left(C_{1}+C_{2}\right) N T_{1}=T_{0} C_{2} \phi_{2}+ \\
& \quad+\left\{C_{1}-\left(C_{1}+C_{2}\right) N_{B 1}\right\} T_{2 B 1}+\left(C_{1}+C_{2}\right) N_{B 1} T_{1 B 1} \tag{26}
\end{align*}
$$

Def. Sc., J, VoL. 23, Octobtr 1973

Again from (6) and (7), we get

$$
\left\{C_{1}-\left(C_{1}+C_{2}\right) N_{B 1}\right\} T_{2 B 1}+\left(C_{1}+C_{2}\right) N_{B 1} T_{1 B 1}=T_{0} C_{1}
$$

Hence (26) reduces to

$$
\begin{equation*}
\left\{C_{1}+C_{2} \phi_{2}-\left(C_{1}+C_{2}\right) N\right\} T_{2}+\left(C_{1}+C_{2}\right) N T_{1}=T_{0}\left(C_{1}+C_{2} \phi_{2}\right) \tag{27}
\end{equation*}
$$

Adding (9) and (10) with (17) and (27), we get

$$
\begin{align*}
& P_{2 B 1}\left[U_{2}+A x-\left(C_{1}+C_{2} \phi_{2}\right) \eta+\left(C_{1}+C_{2}\right) N_{\eta}\right]+ \\
& \quad+P_{1 B 1}\left[U_{1}-\frac{C_{2}}{\delta_{2}}+\frac{C_{2}}{\delta_{2}} \phi_{2}-\left(C_{1}+C_{2}\right) N \eta\right]=R T_{\mathrm{C}}\left(\Theta_{1}+C_{2} \phi_{2}\right) \tag{28}
\end{align*}
$$

Differentiating (28) and (13) with respect to f_{2} with the help of (12), (17) and (23), we get

$$
\begin{aligned}
& \frac{-A P_{2 B 1} v D_{2}}{\beta_{2} P_{1 B 1}}+\frac{\eta P_{2 B 1} \psi S D_{2}}{\beta_{2} \sqrt{R T_{1}}+\frac{C_{2}}{\delta_{2}} P_{1 B 1}\left\{\left(1-f_{2}\right) \theta_{2}-\left(1+\theta_{2} f_{2}\right)\right\}-} \\
& -\eta P_{1 B 1}\left\{C_{2}\left(\theta_{2}-1-2 \theta_{2} f_{2}\right)+\frac{\psi S D_{2}}{\sqrt{R T_{1} \beta_{y}}}\right\}=R T_{0} C_{2}\left(\theta_{2}-1-2 \theta_{2} f_{2}\right)
\end{aligned}
$$

Now $v=v_{B 1}, T_{1}=T_{1 B 1}$ and $f_{2}=1$ will satisfy the above equation, if

$$
\begin{gather*}
-A v_{B 1} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B}}{P_{1 B}}+\left(1+\theta_{2}\right)\left\{T_{0} R C_{2}+C_{2} P_{A B 1}\left(\eta-1 / \delta_{2}\right)\right\}= \\
=\frac{O_{2}}{3_{2}} \frac{\eta \psi S}{\sqrt{R T_{1 B 1}}}\left(P_{1 B 1}-P_{2 B 1}\right) \tag{29}
\end{gather*}
$$

Introducing the following dimensionless constants

$$
\begin{align*}
& \frac{C_{8}}{C_{1}}=\beta_{0}, \frac{D_{2} / \beta_{2}}{D_{1} / \beta_{2}}-\alpha_{v}, \Psi=\frac{\psi S D_{1}}{\beta_{1} C_{1} \sqrt{R T_{a}} \eta_{B 1}} \frac{-\sum_{n 1} A D_{1}}{C_{1} \beta_{1} \beta I_{a}{ }^{2}} \\
& \frac{P_{2 B 1}}{P_{1 B 1}}=\omega_{B 1}, \frac{T_{1 B 1}}{T_{0}} T_{0} 1 \quad \frac{\eta P_{1 B 1}}{R T_{0}}=r_{0} \text { and }\left(\eta-1 / \delta_{2}\right) \frac{P_{1 B 1}}{R T_{0}}=\delta_{0} \tag{30}
\end{align*}
$$

(29) reduces to

$$
\begin{equation*}
1+\theta_{2}=\frac{\alpha_{0}}{\beta_{0}} \quad r_{0} \Psi\left(1-\omega_{B 1}\right) / V^{\sqrt{T}{ }^{1}}+\eta_{B 1} \omega_{B 1} \tag{31}
\end{equation*}
$$

Now to satisfy; hat (19) and (28) should be consistent, we differentiate (28) twice with res ect to f_{2} and substitute (19), and with the help of (13) and (23), we get

$$
\begin{aligned}
& \frac{A^{2} D_{2}{ }^{2} f_{2 B 1}^{2}}{\beta_{2}{ }^{2} \omega P_{1 B 1}^{2}}-\frac{\eta P_{2 B 1} D_{2} \psi S}{2 \beta_{2} \sqrt{R} T_{1}{ }^{3 / 2}} \frac{d T_{1}}{d f_{2}}-2 \theta_{2} \frac{C_{2}}{\delta_{2}} P_{1 B 1}- \\
& -\eta P_{1 B 1}\left\{-2 \theta_{2} C_{2}^{2}-\frac{\square}{2 \beta_{2} \sqrt{\bar{R}} T_{1}{ }^{3 / 2}} \leqslant \frac{d T_{1}}{d f_{2}}\right\}=-2 \theta_{2} R T_{0} C_{2}
\end{aligned}
$$

or

$$
\begin{align*}
& -2 \theta_{2} C_{2}\left[R T_{0}+\left(\eta-1 \delta_{2}\right) P_{1 B 1}\right]= \\
& =\frac{A^{2} D_{2}{ }^{2} P_{2 B 1}{ }^{2}}{\beta_{2}{ }^{2} \omega P_{1 B 1}{ }^{2}}+\frac{\eta D_{2} \psi S}{2 \beta_{2} \sqrt{R} T_{1}{ }^{3 / 2}}\left(P_{1 B 1}-P_{2 B 1}\right) \frac{d T_{1}}{d f_{2}} \tag{32}
\end{align*}
$$

Again from (23) and (24), we get

$$
T_{1} \frac{d}{d f_{2}}\left(C_{1}+C_{2}\right) N+\left(C_{1}+C_{2}\right) N \frac{d T_{1}}{d f_{2}}=T_{0} C_{2} \frac{d \phi_{2}}{d f_{2}}+r T_{1} \frac{D_{2}}{\beta_{2}} \frac{\psi S}{\sqrt{R T_{1}}}
$$

Hence

$$
\begin{equation*}
\frac{d T_{1}}{d f_{2}}=\frac{1}{\left(C_{1}+C_{2}\right) N}\left[C_{2}\left(T_{0}-T_{1}\right)\left(\theta_{2}-1-2 \theta_{2} f_{2}\right)+\frac{D_{2}}{\beta_{2}} \frac{\psi S(r-1)}{\sqrt{R}} \sqrt{T_{1}}\right] \tag{33}
\end{equation*}
$$

Since $T_{1}=T_{1 D 1}, N=N_{B 1}$ and $f_{2}=1$ will satisfy (32) and (33), we get

$$
\begin{aligned}
& -2 \theta_{2} C_{2}\left[R T_{0}+\left(\eta-\frac{1}{\delta_{2}}\right) P_{1 B 1}\right]=\frac{A^{2} D_{2}{ }^{2} P_{2 B 1}{ }^{2}{ }_{2}^{2} \omega P_{1 B 1}}{\beta_{2}} \\
& \left.+\frac{\eta D_{2} \psi S\left(P_{1 B 1}-P_{2 B 1}\right)}{2 \beta_{2} \sqrt{R} T_{3 B 1}^{3 / 2}}\left[-\left(1+\theta_{2}\right) C_{2}\right) N_{B 1}\left(T_{0}-T_{1 B 1}\right)+\frac{D_{2}}{\beta_{2}} \frac{\psi S(r-1)}{\sqrt{\bar{R}}} \sqrt{ } T_{1 B 1}\right]
\end{aligned}
$$

Now, we introduce the central ballistic parameter

$$
M_{1}=\frac{A^{2} D_{1}^{2}}{\beta_{1}^{2} \omega C_{1} R T_{0}}
$$

Then from (30) the above equation can be written in the non-dimensional form as

$$
\begin{gathered}
-2 \theta_{2}\left(1+\delta_{0}\right)=M_{1} \frac{\alpha_{0}{ }^{2}}{\beta_{0}} \omega_{B 1}{ }^{2}+\frac{r_{0}\left(1-\omega_{B 1}\right) \Psi \alpha_{0}}{2 \beta_{0} \sqrt{T_{0}{ }^{1}} N_{B 1}\left(1+1 / \beta_{0}\right.} \\
\cdot\left[\left(1+\theta_{2}\right)\left(1-\frac{1}{T_{0}{ }^{1}}\right)+\frac{\Psi \alpha_{0}(r-1)}{\beta_{0} \sqrt{T_{0}{ }^{3}}}\right]
\end{gathered}
$$

or

The simultaneous satisfaction of (31) and (34) gives the condition that $P_{1}=P_{1 B 1}$ and $P_{2}=P_{2 B \mathrm{r}}{ }^{1}$ may be the solutions of (9) to (16). Equations (31) and (34) actually give two equations connecting fou parameters $\alpha_{0}, \theta_{2}, \beta_{0}$ and δ_{0} defining the second propellant component, the properties and mass of the first propilint component being assumed to be known. δ_{0} involves η and $1 / \delta_{2}$ and β_{0} involves C_{2} which are supposed to be known, as noted earlier, in the integration of equations for the first stage of burning.

Hence we may look upon (31) and (34) as two equations for θ_{2} and α_{0}.
Eliminating θ_{2} from (31) and (34), we get a quadratic equation for α_{2}. To complete our solution we should show that as given by (31) and (34), α_{3} is positive and θ_{2} satisfies $-1<\theta_{2} \leqslant 1$ for practical values of constants involved in (31) and (34). As the solution of the Ballistic equation in the non-isothermal model is not known, weillustrate it considering the isothermal model to have some idea about the results. From Kapur ${ }^{1}$ and Tables given by Corner ${ }^{3}$, we take the values of the constants.

With the constants, thus determined, we tabulate the value of α_{0} and θ_{2}. The shape and size of the second component charge as follows. Since the range of $\boldsymbol{T}_{0}{ }^{1}$ is not known, we take its value considering that $T_{0}{ }^{1}<1$.

- Considering isothermal model, we get from Corner ${ }^{3}$

$$
b=\frac{C_{1}\left[1 / \delta_{1}-\eta(1-\Psi)\right]}{U_{1}-C_{1} / \delta_{1}}, N_{B 1}=(1-\Psi)
$$

Tet $\quad \eta=25 \mathrm{cu} . \mathrm{in} . ~ / \mathrm{lb}, 1 / \delta_{1}=1 / \delta_{2}=17.5 \mathrm{cu}$. in. $/ \mathrm{lb}$,
then

$$
\begin{gathered}
\delta_{0}=\left(\eta-\frac{1}{\delta_{2}}\right) \frac{b(1-\Psi)}{\left[1 / \delta_{i}-\eta(1-\Psi)\right](1+b)} \\
r_{0}=\eta \quad\left[1 / \delta_{1}-\eta(1-\Psi)\right](1+b) \\
\omega_{B 1}=\frac{\left(U_{1}-C_{1} / \delta_{1}\right)(1+b)}{U_{2}+A x_{B 1}-C_{1} / \delta_{1} \Psi} \cdot \frac{\Psi}{1-\Psi}
\end{gathered}
$$

with

$$
X_{B}=\mu\left(\frac{W}{\lambda C_{1} \psi}\right)^{\frac{1}{2}} \frac{U_{2}+A x_{B 1}}{A}
$$

and

$$
X_{0}=\mu\left(\frac{W}{\lambda C_{1} \psi}\right)^{\frac{1}{2}} \frac{U_{2}}{A}
$$

For given X_{0}, ν and b, x_{B} is determined from the Table ${ }^{3}$ and then,

$$
\omega_{B 1}=\frac{\delta_{1}\left[1 / \delta_{1}-\eta(1-\Psi)\right](1+b)}{b(1-\Psi)\left(X_{B} / v-1\right)}
$$

with

$$
\nu=\frac{\mu \eta}{A}\left(\frac{\omega C_{1} \psi}{\lambda}\right)^{\frac{1}{2}}
$$

It is known that $\nu<0.3$ and $-0.5<b<0.5$ and in H / L gun it is expected that ν is less than b. Given b, v and $X_{\nu}, \omega_{B 1}$ is determined.

$$
\eta_{B 1}=\left(\frac{1}{1+b}-\frac{d X}{d \phi}\right)_{B} \quad \frac{\Psi(1-\Psi) b}{\nu \delta_{1}\left[1 / \delta_{1}-\eta(1-\Psi)\right]}
$$

For given b, v and $X_{0},\left(\frac{1}{1+b} \frac{d X}{d \phi}\right)_{B}$ is determined from the Table and then $\eta_{B 1}$ is determined.
Table 1

VALUES or $T_{0}{ }^{1}, a_{0}$ AND θ_{2} FOR $r=1 \cdot 25, \psi=0.5, \beta_{0}=1$ AND $b=0.2, v=0.1, X_{0}=0.1$

$T_{0}{ }^{1}$	a_{0}	θ_{2}	$T_{0}{ }^{1}$	a_{0}	θ_{2}
0.3	1.287	1.310	-0.2497	-0.2795	0.7
0.4	1.317	-0.3012	0.8	1.343	1.354
0.5	1.330	-0.3283	0.9	1.370	-0.3312
0.6				-0.3400	

TABLE 2

$T_{0}{ }^{1}$	a_{0}	θ_{3}	$T_{0}{ }^{1}$	a_{0}	θ_{2}
$0 \cdot 4$	1.465	-0.1232	0.7	1-612	-0.1823
0.5	1.523	-0.1578	0.8	1.620	-0.2012
$0 \cdot 6$	1.578	-0.1636	0.9	1-630	-0.2339

142

Also M_{1} can be determined from the formula :

$$
M_{1}=\frac{\Psi(1-\Psi)^{2} b^{2} \eta^{2}}{\nu^{2}\left[1 / \delta_{1}-\eta(1-\Psi)\right]^{2}}
$$

Travel and Velocity during the Burning of the Second Component
We can show from (20), that

$$
\begin{equation*}
\frac{v_{B 2}}{v_{B 2}}=1+\frac{M_{1} \alpha_{0}}{\eta_{B 1}} \omega_{B 1} \tag{35}
\end{equation*}
$$

Which is the velocity ratio. From the above examples with $T_{0}{ }^{1}=0.8$, we get

$$
v_{B a}=2.67 \text { and } 2 \cdot 32
$$

Also from (19), (12) and (17), we get

$$
-\frac{d x}{d f_{2}} \cdot \frac{\beta_{2} P_{1 B 1}}{D_{2}}=v_{B 1}+\frac{A}{W} \frac{D_{2}}{\beta_{2}} \frac{P_{2 B 1}}{P_{1 B 1}}\left(1-f_{2}\right)
$$

Integrating this taking $x=x_{B 1}$ at $f_{2}=1$

$$
\frac{\beta_{2} P_{1 B 1}}{D_{2}}\left(x-x_{B 1}\right)=v_{B 1}\left(1-f_{2}\right)+\frac{A D_{2} P_{9 B 1}}{2 \omega \beta_{2} P_{1 B 1}}\left(1-f_{2}\right)^{2}
$$

Let $x=x_{B_{2}}$ when the second component burns oit i.e. $f_{2}=0$.
Therefore

$$
x_{B^{2}}-x_{B_{1}}=\frac{D_{2} v_{B 1}}{\beta_{2} P_{1 B 1}}+\frac{A D_{2}^{2} P_{2 B 1}}{2 \omega \beta_{2}^{2} P_{1 B 1}^{2}}=\frac{D_{2}}{\beta_{2} P_{1 B 1}}\left[v_{B 1}+\frac{A D_{2}}{2 \beta_{2} \omega} \frac{P_{2 B 1}}{P_{1 B 1}}\right]
$$

Then from (30), we get

$$
\frac{x_{B 2}-x_{B 1}}{x_{B 1}}=\frac{\eta C_{1}}{r_{0} A x_{B 1}}\left[\alpha_{0} \eta_{B 1}+\frac{M_{1} \alpha_{0}^{2}}{2} \omega_{B 1}\right]
$$

Let us introduce another dimensionless quantity

$$
\xi_{B 1}=\frac{\eta C_{1}}{A x_{B 1}}
$$

Hence the travel ratio

$$
\begin{equation*}
=\frac{\xi_{B 1}}{r_{6}}\left[\alpha_{0} \eta_{B 1}+\frac{M_{1} \alpha_{0}^{2}}{2} \omega_{B 1}\right] \tag{36}
\end{equation*}
$$

Now differentiating (9) with respect to f_{2} and using (17), (23) and (24)
or

$$
\begin{aligned}
& P_{1 B 1} \frac{C_{2}}{\delta_{2}} \frac{d \phi_{2}}{d f_{2}}-\eta P_{1 B 1}\left[C_{2} \frac{d \phi_{2}}{d f_{2}}+\frac{D_{2}}{\beta_{2}} \frac{\psi S}{\sqrt{R T_{1}}}\right]=R\left[T_{0} C_{2} \frac{d \phi_{2}}{d f_{2}}+\frac{r \psi S D_{2}}{\beta_{2} \sqrt{R}} \sqrt{T_{1}}\right] \\
& C_{2}\left(\theta_{2}-1-2 \theta_{2} f_{2}\right)\left[R T_{0}+\left(\eta-\frac{1}{\delta_{2}}\right) P_{1 B 1}\right]=-\frac{\psi S D_{2}}{\beta_{2}}\left[\frac{\eta P_{1 B 1}}{\sqrt{R T_{1}}}+r \sqrt{R T_{1}}\right]
\end{aligned}
$$

From (30) this can be reduced to

$$
\begin{equation*}
\left(\theta_{2}-1-2 \theta_{2} f_{2}\right)\left(1+\delta_{0}\right)=-\Psi \frac{\alpha_{0}}{\beta_{0}}\left[\frac{r_{j}}{\sqrt{T^{1}}}+i \sqrt{T^{1}}\right] \tag{37}
\end{equation*}
$$

where

$$
T^{\prime}=\frac{T_{1}}{T_{0}}
$$

This determines T as a fraetion of f_{2}.
Then (23) ean be written as

$$
\left(1+\frac{1}{\beta_{\theta}}\right) \frac{d N}{d f_{2}^{\prime}}=\frac{d \phi_{2}}{d f_{2}}+\Psi \frac{\alpha_{0}}{\beta_{v}} \frac{1}{\sqrt{T_{0}}}
$$

Pulting the value of T^{1} from (37) and then integrating the above equation, we get N as a function of fo. Hence

$$
\begin{equation*}
N=\frac{\beta_{0}}{1+\beta_{0}}\left(1-f_{2}\right)\left(1+\theta_{2} f_{2}\right)+\frac{\Psi \alpha_{0}}{1+\beta_{0}} \int \frac{1}{\sqrt{\bar{T}}} d f_{2}+B \tag{38}
\end{equation*}
$$

Where B is determined by the initial condition $N=N_{B i}^{*}$

when

$$
f_{2}=1
$$

As T_{1} and N are determined from (37) and (38), T_{2} is determined as a function of f_{2} from the relation (27).

ACKNOWLEDGEMENT

The author has much pleasure in expressing his gratefulness to Prof. A. Ray for the continuous futerest shown by him in the preparation of this work and the benefit of disension with him.

REFERENCES

1. Kapur, J. N., Internal ballistios of H/L gun, Proc. Nat. Inst. Sci., India, 23 A (1957), 312.
2. Agaanwat, S. P., Internal ballistics of H/L gun using propellant of any shape, Proc. Nat. Inst. Sci., India, 21A (1955), 350.
3. Cornma, J. "Theory of Internal Ballistics of Gun" (John Wiley \& Sons, New York), 1950.
4. Cobnir, J., Proc. Roy. Soc., 188A (1948), 237.
