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An investigation is made to study the unsteady visgous flow of 12-immisoibleand incompressible rarefied gases, 
occupying equal heights between parallel and stationwy plates undsr the influence of a periodic pressure gradient . 
superpoaed on the steady laminar flow. Expressions for velocity distributions have been obtained in exact form. 
The effects of the rarefaction parameter on the velocity distribution have been shown graphically when there are 
only two gases. 

In the present era of high altitude flights the problems concerning the flow of rarefied gases have been 
recognised to be of immense importance. For rarefied gases, the ordinary continuum approach fails to 
yield satisfactory results. However, when the gas is only slightly rarefied, results agreeing with the observed 
physical phenomena can be obtained by sslving the usual Navier-Stokes equations together with modified 
boundary conditions allowing for a velocity slip and temperature jump at the surface. This scheme of 
theoretical investigation is particularly suitable for studying the effects of gas rarefaction on any classical 
viscous flow problem. The problems concerning the flow of immiscible fluids play important roles in 
medicine, industry and defence. 

The problems of immiscible fluids under the influence of a constant or periodic time dependent pressure 
gradient have been studied by Rirdl et al., Kapur & Shukla 29 3, Gupta & Goyal? In  all these problems 
the flow of normal density fluids was considered. I t  is of interest to study how Gupta & Gaya14's results 
get modified when his no-slip boundary conditions are replac,ed by the velocity slip conditions. This 

, t indeed is the motivation for the present investigation. d 

In this paper, we have studied the viscous unsteady flow of n-incompressible and immiscible fluids 
occupying equal heights between two parallel and stationary plates under a periodic time-dependent pres- 
sure gradient superposed on the steady laminar flow in slip flow regime. Expressions for velocity distri- 
butions have been obtained in exact form for all the gases. Comparison of results of slip and no-slip cases 
is shown graphically in the case of two fluids in particular. The assumption that the fluid is incompressible 
is a fairly valid approximation at least for low mach number flows. However, for a more accurate descrip- 
tion of the flow in rarefied gases, the compressibility effects should be taken into account. 

M A T H E M A T I C A L  F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the flow of n-viscous incompressible and immiscible rarefied gases each occupying a height h 
filling the gap between two infinite parallel and stationary plates kept at a distance nh apart. Choose a 
cartesian co-ordinate system with x-axis along the lower plate and parallel to the flow, y-axis perpendicular 
to it and upwards and z-axis lying on the plate. 

/ 

The governing equations of motion for viscous incompressible and immiscible fluids (rarefied gases) 
neglecting external forces are 

where 9, P ~ Y  vj are the velocity, density and kinematic viscosity of- the j-th gas starting from lower to the 
'upper plate. 

Equation (2) reveals that the pressure is constant across the section of the channel. 
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The boundary conditions are 

where 

L being mean free path and f being the Maxwell's reflecxion coefficient. 

S O L U T I O N  O F  T H E  M O R E  P R O B L E M  

2'9 The pressure gradient becomes only function of t for the uniform pulsating flow for which - = 0, 

let us express it by the following Fourier series 
35  

CX3 

-- I = x ,  + R e z  Xm eimt 
Pj 2. 

m= 1 
where 

X m  = X m  - ix,, 
and Xm and X S ~  are constants which represent the amplitudes of elemental vibrations. 

Similarly, let us express the longitudinal velocity as - ,  

where 

and the coefficients um(j) , u~rnU) and uam(j) are the functions of y only. 

Substituting (4) and (5)'in (1) and equating the terms of the same family, we obtatr 

The boundary conditions reduce to , 

I t  is assumed that for moderate pulation, the shape of the interfaces does not change. Neglecting the 
avrface tension at the interfaces, the velocities at the interfaces can be taken as 
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where L 

Ap and (Am)p are constants to be determined. 

With the help of (5) and (9), we obtain 

o ~ ~ ( P )  = a,( P + 1 ) = A ZJ O n y = ~ b  . (10) 

and - - 

urn@) =um(P+l) = ( A m ) p  on y - ph (11) 

The solution of the equation (6) is 

This equation shows that the steady part of velocity distribution is parabolic. 

From (8) and (lo), we obtain 

. * 
Similarly, the solution of the equation (7) is 

where , 

From (8) and (1 1) , we obtain 



(Am),-, -N + { M  (Am),) e  - 8~~ 
Cp=! a sinh (Sph) a - 

L ,  S n -  1) {(.Am)n - - iM) + Me fimh 
B,  = - 

2 e8,h (sinh (ST&) + L, 8, coeh (Snh)) 

(1 + ~ 1 % )  { ( A ~ ) ~ - I - - M )  + ~ e - r ~ , ~  ------ 
Cm = mnnh { ~inh (Snh) + Ll Sn c o d ~  ((Snh)} (25) 

Hence Using (5), (12) and (19), the complete velocity distribution is given by 

X0 y 2 + B o ( j ) y + ~ & A  + 
* j = -  -- 

I 
2 vj  

+ Re se"t{ B , e & y  + c j e - ~ W  + M (26) 
m = l  

- - 
D E T E R M I N A T I O N  O F  I N T E R F A C E  V E L O C I T I E S  

In order to determine the interface velocities, the continuity of the shear a t  the interface is to be 
considered. 

. " <  - . . s .- 

(.. +),=, = ( + ) , ( p  - th interface) - , 
ay Y = P ~  

Substituting (26) in (27), ping  (13) to (18) and comparing the terms ofthe same family, we have 

Pn-1 -- Pn--1 + - -_Pn -) A"' ( " L l +  h L l +  h ( L l  + h) Pn 

From the equations (28) to (30), we can'deterrnine A,.  Similarly, ( A m ) ,  can be obtained using 
equations (20) to (25). 

Skin Friction 
The skin friction at the lower and upper plates are given by 



Particular Case : Two Ratefied Gases 

In  this case there are only two rarefied gases filling the gap equally between two plates at a distance 
2h apart. 

The velocities of the lower and upper rarefied gases are given by 

where j= 1 for the lower gas occupying the region O,Cy<h; j=2 for the upper gas occupying the region 
hl y< 2h and Bo(l), Co(l), BI and C, are given by (13), (14), (20) and (21) respectively and BOW, COW, Bz and 
C2 can be obtained from (17), (18), (24) and (25) respectively on putting n=2. 

The velocity at the common interface is given by 

where 

i ,  
Xoh (2x1 + A) ( P I  + ~ 2 )  A,  = 

2 ( r l  f 1*2) 
(35) 

and 

p1 S1 ( cosh (a91fi) 4- Ll 
[ sinh (lJ1h) + Ll Sl 

p1 S1 { cosh (Blh) L l 8 1  sinh (Slit) - 1) p2 8* {cosh (B2h) + Ll S2 ainh = [ sinh (&h) + Ll IS, cash (Blh) + 
iinh (&h) + Ll ISp m ~ h  (&I&) 

(36) \ 

The skin friction at lower and upper plates are given by 

and 



D I S C U S S I O N  

The velocity profiles for the flow of two immiscible and incompressible rarefied gases occupying a 

height h each have been drawn for different values of rarefaction parameter .$ = with axial 
h 

Xoh3 pressure gradient - = 1 for the steady case. There are three sets of profiles having three each. 
v2 

In one set the kinematic viscosity is the same for both the gases. In this case the velocity profiles are 
parabolic. In other sets the kinematic viscosity of the upper gas is lesser or greater than that of lower one. 
When the kinematic viscosity of the upper gas is lesser than that of lower one, the velocity is maximum in 
the upper portion (h  < y < 2h),  while the kinematic viscosity of the upper gas is greater than that of lower 
one, it is maximum in the lower portion (0 < y 5 h). Ei-om the figure the parabolic proses for the gas of 
the same viscosity can be compared with the veloclty profiles for the gases, filling the upper  ort ti on, whose 
kinematic viscosity is lesser or greater than that of lower one. I t  is also observed that the magnitude of 

Fig. 1-Distributionof velocity for two rarefied gases occupy- 
ing a flight h each. 
A for p,=p, pl=p, p2='3p, p,=p.p 
B for pl=p, P,=P, P S = . ~ ~ P ,  PB= 5p & 
C for p,=p,=p, p1=p2=p. 

the velocity depends on the kinematic viscosity of the gas. I t  increases for the decrease of v and vice-versa 
for constant values of rarefaction parameter and pressure gradient. The figure also exhibits the effect of the 
rarefaction parameter on the velocity field. We observe that an increase in the rarefaction parameter 
increases the velocity at any point of the rarefied gases. I t  is noted from equations (13), (14), (17), 
(18), (33) and (34)that the velocity at any point of the gases is multiplied by the same quantity by which 
the pressure gradient is multiplied which is in agreement with the physical situation. 
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