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An investigation is made to study the unsteady viscous flow of n-immiscible and mcompreselble rarefied gases,
occupying equal heights between parallel and stationary plates under the influence of a periodic presgure gradient
superposed on the steady laminar flow. Expressions for velocity distributions have been obtained in exact form.
The effects of the rarefaction parameter on the velocity distribution have been shown graphically when there are
only two gases.

In the present era of high altitude flights the problems concerning the flow of rarefied gases have been
recognised to be of immense importance. For rarefied gases, the ordinary continuum approach fails to
yield satisfactory results. However, when the gasis only slightly rarefied, results agreeing with the observed
‘physical phenomena can be obtained by selving the usual Navier-Stokes equations together with modified
boundary conditions allowing for a velocity slip and temperature jump at the surface. This scheme of
theoretical investigation is particularly suitable for studying the effects of gas rarefaction on any classical
viscous flow problem. The problems concerning the flow of immiscible fluids play important roles in
medicine, industry and defence.

The problems of immiscible fluids under the influence of a constant or periodic time dependent pressure
gradient have been studied by Bird! et al., Kapur & Shukla 2, 3, Gupta & Goyalt. In all these problems
the flow of normal density fluids was considered. It is of interest to study how Gupta & Goyal®’s results
get modified when his no-slip boundary conditions are replaced by the velomty slip conditions. This
‘indeed is the motivation for the present investigation. '

In this paper, we have studied the viscous unsteady flow of n-incompressible and immiscible fluids
occupying equal heights between two parallel and stationary plates under a periodic time-dependent pres-
sure gradient superposed on the steady laminar flow in slip flow regime. Expressions for velocity distri-
butions have been obtained in exact form for all the gases. Comparison of results of slip and no-slip cases
is shown graphically in the case of two fluids in particular. The assumption that the fluid is incompressible
is a fairly valid approximation at least for low mach number flows. However, for a more accurate descrip-
tion of the flow in rarefied gases, the compressibility effects should be taken into account.

MATHEMATICAL FORMULATION OF THE PROBLEM

Consider the flow of n-viscous incompressible and immiscible rarefied gases each occupying a height 4
filling the gap between two infinite parallel and stationary plates kept at a distance ni apart. Ghoose a
cartesian co-ordinate system with x-axis along the lower plate and parallel to the flow, y-axis perpendicular
to it and upwards and z-axis lying on the plate.

4
The governing equations of motion for viscous mcompresmble and 1mrmsc1ble fluids (rareﬁcd gases)
neglectmg external forces are
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.where u;, Pp» ¥ are the velocity, density and kmemauc v1sc051ty of the j-th gas starting from lower to the
'upper plate.

Equation (2) reveals that the pressure is constant across the section of the channel.
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The boundary conditions are

. ' ' 2y
t) =L, 28
u1(0 t) 1 5y

L e |

5 ®3)
Un
| u,.(nh,t):Ll—a—?l-
where
L=~
; 1 s
L being mean free path and f being the Maxwell’s reflecxion coefficient.
SOLUTION OF THE MORE PROBLEM
The pressure gradient becomes only function of ¢ for the uniform pulsating flow for which 2y = 0,
let us express it by the following Fourier series
&«
1 2 N .
T e ~ Xt Be g X o | *)
m=1
where
Xm = Xcm — ”;Xam
. and Xem and Xep are constants which represent the amplitudes of elemental vibrations.
Similarly, let us express the longitudinal velocity as
’ P[D
0 @
uj=1u, “Re z Uy gim ‘ (5)
where
‘ @) @ . W)
u,,, = uom — @um
and the coefficients um(j), wuom(/) and wusm(/) are the functions of y only.
Substituting (4) and (5)\in'(1) and equating the terms of the same family, we obtain
®)] :
d*u, X, :
r + o - 0 - (6)
The boundary conditions reduce to .
duy® dum® ‘
M = LAt m — 0
R T L, dy 5 U \Ll 3 at y =0 l
du,(™ T dn™ ®
uD(")=-L1_#éﬁ’um(“)=~Ll-W aty:nhl

It is assumed that for moderate pulsation, the shape of the interfaces does not change. Neglecting the
.surface tension at the interfaces, the velocities at the interfaces can be taken as

20

uj = Apv-l- Re Z (Am)p €™t on y = ph. T )
o ‘ m=1 o ’
G=pp+1 and p=12 ...... , (n—1).
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where , N B T
Ap and (Am)p are constants to be determined.
With the help of (5) and (9), we obtain
, P = q(P+1) =4,  ony= 1’7‘
and ‘ ‘ B ,
U = U PF 1) = (dm), ony — ph

The solution of the equation (6) is
U = —1/2 = of 4+ By + O
SR J : ,

This equation shows that the steady part of velocity distribution is parabolic,
From (8) and (10), we obtain )

1 1 X\ )
1) = - = '
By (L1+h)(A T3 )
' ’ ml 1 X he
y = -
cw= gy (4ti50)
1 . 1 X o
B =— g (dp—1—4dy)+ 5 S (p—1) -
o ’ A
1 X& B
OfP =pdp—3—~(p—1) dp— 5 5= p(p—1) ;
P
1 X
' Xoh2(n—1
C™ = (L1+h) [(L1+nh)A,,_1 -———-——Z(i—-———)-{ L, n-{—l)—[—nh }
Similarly, the solution of the equation (7) is
- iX
upl) = Bj ey - Cj e~y + %..
where
g =2 mis——
Vi com

From (8) and (11) , we obtain -
L1 S]_ (]. +{(AM)1 ““M} + Me —'Slh

Bi = 3 {siuk (8, 7) + L, S, cosh (8, )]
0 = (LnSi—LH{(dm), — M} — Me St
1= Nmﬂ&@+h&mﬂ@@}
B, = Mi—(dm)p—y + {(dm)p — M} oS

2 sinh Sph € Seh

(10)

(1)
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(14)

(15)

(16)
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(20)
(21)
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_, (Am)p—y— M - {M — (Am)p} e —Sp?

Cr = 3 sk (Syhe — Spr* | ey
B - PJ_Sn—'l){(Am)n_l M}+M@Sh . .
"7 268,F {sinh (Suk) + L, S, cosh (5,5)} - (24)
o = (Ut LiS) {(dmhe 1 —30) + Moo= S | o
m T 96— B, {smb (Syh) + Ly.S, cosh (8,4} (25)
Hence Using (5), (12) and (19), the complete velocity distribution is given by
up=— - —vi 2 - Byd) gy + QgD +
| ‘ 4 ’
> v ] .
+ ReyZe@mt{ Bjesy - Cje— Sy + M j » (26)
m=1 . :

DETERMINATION OF INTERFACE VELOCITIES

In order to determine the interface velocities, the continuity of the shear at the interface is to be
considered.

----------

AUy _ gup—l—l) ' : - ‘
( A y )y=ph = (#p—!—l oy yph’ (p - th interface) . 2n

+ Substituting (26) in (2.7), using (13) to (18) and comparing the terms of the same family, we have

(L1+k+ k)A‘" N (L1+h) +”2} (28)
o - g
— 5 Ao “L‘ﬁ'—l‘ dp— L gy = S () )

(Ly + k) Pr

From the equatlons (28) to (30), we can\determme Ap. Similarly; (Amn),, can be obtained using |
equations (20) to (25). .

P . " X, b [ LR 7T
_‘_fAn—z‘i' (-u‘hl + Llﬂ_l_k)A”_l _%_[pn—:\l—*‘ _(__.].'.._L_ ] (30)

Skin Friction .
The skin friction at the lower and upper plates are given by

/ ™ '
= ”}%[C’&”‘FR@ zew (B, + € +M>]’ )
v ! _ m=1 ’ o
n 2p2 X,
(ra=— [—% —"———+nhBo<">+oo<“>+
/

- : nh —$ nh ‘ » |

+Rezeimt.(BneS” 4O " +M)‘ - (32

m==1
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Particular Case : Two Ratefied Gases

In this case there are only two rarefied gases filling the gap equally between two plates at a distance
2k apart, ,

The velocities of the lower and upper rarefied gases are given by

/

1 X, . :
w=—— =t g+ B g+ O +
j
2 ¥ -8y . :
+ Re Z eimt{ (Bjesj + Cjc S] + M } (33)
m==1 ‘
G=12

where j=1 for the lower gas occupying the region 0 y<<k; j=2 for the upper gas occupying the region
hy y<< 2h and B!}, G, By and C, are given by (13), (14), (20) and (21) respectively and By2), C,(?), By and
C. can be obtained from (17), (18), (24) and (25) respectively on putting n=2.

The velocity at the common interface is given by

# = Ay 4 Re z (Am), etmt ' (34)
m=1 - : -
where
| ;
_ Xoh 2Ly + 1) (py + pa) E
4= 2(py + pa) (88}
and
am, [ S0k (B4 Loy ik (67)) 1S { cosh (Sah) + I, Sysinh (S,3))
( 1 Sinh (Slk) + Ll Sl GOsh (‘Slk) : Slnh ((Szk) + Ll Sz 00811 (Sgk) ]
=M [ “1 S]_ { cosh (Slh) ’J“‘ L]_ S]_ Slnh (IS]]&) — 1} 2 Sg {COSh ((gzk) -+ Ill _Sg sinh (Szk)—— 1}
- sinh (S;k) 4 L, 8; cosk (S;h) sinh (8;7) 4 L; 8 cosh (S,7) ]
. (36)
The skin friction at lower and upper platcs are given by
N ‘ZI% [ Oy + Re z (B, + 01+ M) etm ] , Wf . @D
m==1 . ' :
and s N
2 .
T3 = {2[ _ 'ZAvXOh' +2B® h + C™ -
1 2 ]
< L) —~2Q h S
+ReZG'"“ ((Bz Sz‘l‘c'ze 5 +M)] o C o (38)
mes 1 ' : .‘ . ' :
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DISCUSSION

N

The velocity profiles for the flow of two immiscible and incompressible rarefied gases occupying a

height % each have been drawn for different values of rarefaction pafameter & = —hl with axial
3 . "
pressure gradient ng = 1 for the steady case. There are three sets of profiles having three each.
14

In one set the kinematic viscosity is the same for both the gases. In this case the velocity profiles are
parabolic. In other sets the kinematic viscosity of the upper gas is lesser or greater than that of lower one.
When the kinematic viscosity of the upper gas is lesser than that of lower one, the velocity is maximum in
the upper portion (A < y < 2k), while the kinematic viscosity of the upper gas is greater than that of lower
one, it is maximum in the lower portion (0 < y < A). From the figure the parabolic profiles for the gas of
the same viscosity can be compared with the velocity profiles for the gases, filling the upper portion, whose
kinematic viscosity is lesser or greater than that of lower one. It is also observed that the magnitude of

&
207 o——08B
——x C

. 1=2 ’ \ \

165

g/n

- - 1
0 02 o4 06 o8 0 M
. u;h /9

Fig. 1—Distribution of velocity for tworarefied gases occupy-
ing a flight b each.

A for py=p, pr=p, pa="3u, ps=p.p .
B for py=p, pr=p, pa=="8u, py="5p &
C for py=py=p, pr=ps=p.

1

the velocity depends on the kinematic viscosity of the gas. It increases for the decrease of v and vice-versa
for constant values of rarefaction parameter and pressure gradient. The figure also exhibits the effect of the
rarefaction parameter on the velocity field. We observe that an increase in the rarefaction parameter
increases the velocity at any point of the rarefied gases.- It is noted from equations (13), (14), (17),
(18), (33) and (34)that the velocity at any point of the gases is multiplied by the same quantity by which
the pressure gradient is multiplied which is in agreement with the physical situation.
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