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In Part I, the authors had obtained a solution for bending an aelotropic circular block into an ellipsoidal shell and

" obtained the solution for the problem of bending an aelotropic circular block into a spherical shell as a particular
cage. In this paper, the solution for bending a circular block into & paraboloidal shell has been obtained on the same
lines in terms of a completely general strain energy function for both compressible and incompressible materials.

The theory of finite deformation received fresh impetus when Rivlin! obtained exact solutions for a
number of problems specially for incompressible bodies, in terms of an arbitrary strain energy function.
References to various developments are found in the surveys by Rivlin!, Truesdell & Toupin?, Green &
Zerna3, Green & Adkinst, and Eringen®. Recently, Green & Adkins® examined the finite flexure of an aelo-
tropic cuboid. The problem of bending an aelotropic circular block into an ellipsoidal shell was considered
by the present authors” in Part I and a solution was obtained in terms of a completely general strain energy
function. The solution for the problem of bending a circular block into a spherical shell was obtained as a
particular case. In this paper, the problem of bending a circular block into a paraboloidal shell has been
considered. The solution has been obtained in terms of a completely general strain energy function for both
compressible and incompressible materials.

NOTATION AND FORMULAE

We adopt the notation and formulae of Green & Adkins®, The strain energy W of a homogeneous
aelotropic body is expressed as a polynomial

W=TWey) M

in the components of strain e;. The stress tensor T% for a compressible body is given by

" 1 aw W ab  abi
™= 24/ I ( ey e ) 22" 9w ° (2)
where
Iﬁ= t267‘0+ 8"0 - , . (3)
Por an incompressible body, I, = 1, and the stress tensor 7% is given by
. 1 (aW aW \ a6 a6i . .
T‘J = *‘é— ( Py aear ) awr axs +pGJ§ (4)

where 7 18 a scalar function of ¢, and G% is the contravariant metric tensor of the curvilinear coordinates
@ in the deformed body.

" The equations of equilibrium, in the absence of body forces, are

i

j=0. | (5)
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BENDING OF A CIRCULAR BLOCK

Let us consider bending of an aelotropic compressible circular block into a paraboloidal shell. Suppose.
that a circular block in the undeformed state is bounded by the planes Xy3.= a, T3 = ag, (@2 > @,), and the
cylinder 7,2 + 2,2 = 42 The block is bent symmetrically about the @,-axis into a part of a paraboloidal

shell, whose innerand outer boundaries are the paraboloids of revolution obtained by revolving the con-
focal parabolas

2.2
3 2 4

o = ém,0=1,2, : o (6)

about the z,-axis, and the edge 7 = «. Let y;-axes coincide with #;-axes, and the curvilinear coordinates
6 in the deformed state be a system of orthogonal curvilinear coordinates (¢, v, ¢), where is the angle
between y, y,-plane and the plane through a point in space and the y;-axis. Then, ‘

?/1‘_‘f")cos‘?7?/2=fﬂSin@ay3:(§2*ﬂ2)/2‘ (N
Since the deformation is symmetric. about the z,-axis, we see that A/ T ,
(¢). - the planes @, = constant in the undeformed state become the paraboloidal surfaces ¢ = constant
in the deformed state; - - - Ce ~ ’

(%) the surfaces w2 -+ ;% = constant in the undeformed state become the surfaces 9 = constant in the
.. deformed state ; and , «

(i) tan— (mfm) = .
Thus, the deformation is given by ’
§=flx5):m = F (o, + 9%, ¢ = tan—! ("’“’2/971) ‘ (8)
The strain codenents are given by N o . o |
e = et P gy At b —1,
2e = 422 F2 (82 4 n°) + £ w0 4 w22 — 1, L

Doy =fE+1)—1, ; l( (9
C2e3 = 4z 3 F? (fz -+ 12) — @y By £2 ¥ (32 - 22 ‘ ' ’
, e = ¢y = 0. N L J‘
The stress tensor (2) for compressible material has components )
T — ___]_”2_ ._a_.Wi. R | ' 1
\/Is ey S ,
. 4 B aw aw oW aW)}
22— T 2 2 . A
T v 1 {xl dep T ez +,wl 2 ( e + d ez S I P
| oW aw aw aW)} SRR B
— 2 . 2 ' - < 10
: ~ (1 4 @22 4/ Iy {xz dep te dez + nt2 ( den T dex (0
‘ o ‘ oW W ) (a'W aW)}
28 — . _— (3,2 — 292
I 2(@12 +£I£22) \/ Is {2 &1 %2 ( 3 o2 2 e ) + (&, X2 ) e + 2 |
72— 7%=, |
| J
where
1'3 — 4'7"’2 F2 (52 + n2)2 &2 ,,72 \ (11)
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The metric tensor for the strained state of the body is given by

gm0 0 /
Gy = [ 0¢ +7°0 ] f - (12)
L 80 g2 : '

The equations of equilibrium (5) reduce to

Wy @Yy 4 Doy A T3%,) T o Ty T2 4 Ty T# =0, 7‘ ;
:2,2_|_(['112+2p22§+p332)”TJ2+"pz‘T1'1+r2331133___0, ? : (13)
,2+(I’12+I”22—|-31"332)T‘3—0 : -

The above equations of équilibrium, as they stand, do not seem, to a.dm1t a solution. However, a solution
can be obtained if we assume 7 to be so small® that 5> may be neglected when compared with 5, and that
n=F(x?+ 2% = K (22 -+ 2,5)/% Physmally this implies that the paraboloidal shell is within that
paraboloidal shell for which n = constant. It is further noted that the deformed shellis shallow or deep
according as &;, ¢ = 1, 2, are large or small respectively, where &, ¢+ = 1, 2, glve the boundaries of the
deformed shell. Then the expressions corresponding to (9) to (12) redice to ; .

. wu=wﬁeL%ﬂ=mg—L} | | 14
o 20 =f2E8—1, ep=e3=1e;=0,5 "~ ! (1)
oo A7 AW L, B W )

2 3633 . Vi, dey 1 (15)
TR AW :
P i N O R, 1 R - Y I
Pyl aen =T T 0
' = K4f'2 '§6 ) (16)
g 0 0 S .
Gy = [ o & N S o (17
| 00 gl T
Then, the second a,nd the third equa.tlons of equlhbrlum (13) are satlsﬁed 1dentlcally The first equation
gives . ;
g 9 ) \3W ) " T )_ 2 ( aW 1\ _
rme Er ( AT )+f é:( 333 +j ¢ 3333 2K ¢ ST =9 (18)
Now ) B
_aW _ aW ey 4 aW “3e "-I- aMW ey
d¢ 8611 i af 3622 ) af S 4633 35
1 " /4
=f2§ +f 52 +2K2§ 2 (19)
3en
From (18) and (19), we get
oW 3 (., W SR LT
| T A (Y LI o
*~ which on integration gives ' -
S LAY { e
werre (L5) —w. 1)

where W, is a constant, -
Wy
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This gives
W+ W, v
JP= — (22)
g2 |
: d €53
The knon—vanishing physicalbomponents of stress, from (15) to (17) are give‘nkbyf
: : 1 ,
Uu=“‘K‘r2—\/(W+W0)aW : } ,
3 EPR
: : (23)
099 = O =ﬂ\/ﬂ/(w+W)
% 2¢en dey; [ 0 J

BOUNDARY CONDITIONS

LIf—R;, (6 =1, 2), are the applied normal tractions on the ipner and the ()/utel",;ﬁﬂ?faces of fhe shell,
we have : ’ : ‘

' ’0]] = '—‘Ri When £ ::'» & . 7/=,J’ﬁ’ . (24)

which on substitution in (23) gives: o ~ "

1 \ aW
"KZEI {W(fg)’1‘ Wo} ( );’ = R;?,

9 €33
i=12 (25)

Solving these, we get the yalues of the coustants Woand K. >~
~ Onthe edge 9 = ‘oc, the distributions of tractions per unit arc ‘between ¢ and ¢ - dp give rise to a
force P, and a souple M, about the origin given by , .

. £ ’ .
« aw aw . )
F, — 2 - / - -
— 1= f ¢ dey des | (W + Wod ¢ L : ,
1 £y W 7 / ‘ - (26)A
Mo * f . 9 2 :
A -2 5‘3311(” A3633‘7[(W+W0)d§
_ _— R o
When the material is incompressible, I; = 1. Then from (16) we have
I |
de, ~— K2gs? L -
N - ‘,,“.“ .
which on integration gives - =
’ 2 ¢4 =7
0 = 25 4 p, | (27)

where B is an arbitrary constant. i 7
As the internal and the external boundaries of the paraboloidal shell are given by £= &, ¢ = 1,2, |
respectively which were initially the planes @, = a4, and #; = a,, equation (27) gives

-~
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1 £2— &P

. K2 _4(al—d2)’

and

! £t —ag &4t
S = oy X (2)

The equa,tions of equilibrium in this case, in view of the components of stress tensor (4), give

ve 2 (rm ) vaern (2D ) 2w (£5) =0

3 f 13 dég3 ey déy
2p ap
2P _o, 22 . 30
an ~ 0 ag 0 (30)

The equations (30) show that p is a function of ¢ alone.

Equation (29) in view of (19) gives v
1 aw

p=W+Wo— Fra e, (31)
Then the physical components of stress are given by
oy = W+ W,
o = op = W+ W, + K2 & :Z . K41£‘1 a::; (32)
II. If the inner boundary ¢ = £, of the shell is free from tractions, we must have
| oy = O when ¢ = £, "
which on substitution in (32) gives )
| Wo=—W (&) | ' (33)
" On the outer boundary ¢ = £;, we have to apply a normal traction R given by .
R = oy (&) =W (&) — W (&) (34)

On the edge 7 = o, the distribution of tractions between @ and o -+ dv glve rise to a force Fj and a
couple M about the ongm which are given by

£

' . aW 1 aW
F2=u!‘§2[W+W0+KZ§2 26 - K4§4 ’3633 ]df’
« [ , ,. oW 1 W
M2=——§—f§4[W—I—W0+K3§3 de, _K4§4 9¢€y, ]df‘ (35)

Thus we see that to bend a ciroular block into a paraboloidal shell, we require a resultant force F and
a coutple M on the edge together with a normal traction R on the outer surface.
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