
BENDING OB AELOTROPIC BLOCKS - I1 

Science College, Saifabad, Hyderabad 

Nagarjunasagar Engineering College, Hyderabad 

(Received 1 January 1972) 

In Part 3, the authors had obtained a solution for bending an aelotropic circular block into an ellipsoidal shell and 
obtained the solution for the problem of bending an aelotropic circular block into a spherical shell as a particular 
case. In this paper, the solution for bending a circular block into a paraboloidal shell has been obtained on the same 
lines in terms of a completely general strain energy function for both compressible and incompressible materials. 

The theory of finite deformation received fresh impetus when Rivlinl obtained exact solutions for a 
number of problems specially for incompressible bodies, in terms of an arbitrary strain energy function. 
References to various developments are found in the surveys by Rivlinl, Truesdell & Toupin2, Green & 
ZernaS, Green & Adkins4, and Eringen5. Recently, Green & Adkins6 examined the finite flexure of an aelo- 
tropic cuboid. The problem of bending an aelotropic circular block into an ellipsoidal shell was considered 
by the present authors7 in Part I and a solution was obtained in terms of a completely general strain energy 
function. The solution for the problem of bending a circular block into a spherical shell was obtained as a 
particular case. In  this paper, the problem of bending a circular block into a paraboloidal shell has been 
considered. The solution has been obtained in terms of a completely general strain energy function for both 
compressible and incompressible materials. 

N O T A T I O N  A N D  F O R M U L A E  

We adopt the notation and formulae of Green & Adkins6. The strain energy W of a homogeneous 
aelotropic body is expressed as a polynomial 

W = W(eij) ( 1 )  

in the components of strain Gj. The stress tensor Tij for a compressible body is given by 

where 

Bor an incolnpressible body, I, = 1,  m d  the stress tensor TU is given by 

where p is a scdm function of 8" and Gij is the contravariant metric tensor of the curvilinear coordinates 
C in the deformed body. 

The equations of equilibrium, in the absence of body forces, are 
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B E N D I N G  O F  A  C I R C U L A R  B L O C K  

Let us consider bending of an aelotropic compressible circulax block into a paraboloidal shell. Suppose 
that a circular blockin the undeforrned state is bounded by the planes x3 = a,, x3 = a2, (a2 > a,), and the 
cylinder x12 + xZ2 = a2. The block is bent symmetrically about the x3-axis into a part of a paraboloidal 
shell, whose inner and outer boundaries are the paraboloids of revolution obtained by revolving the con- 
focal parabolas 

about the x3-axis, and the edge 7 = a. Let y,-axes coincide with %-axes, and the curvilinear coordinates 
Oi in the deformed state be a system of orthogonal curvilinear coordinates (6, 7, rp), where is the angle 
between y, &-plane and the plane through a point in space and the y3-axis. Then, 

31 = 6 cas 9, y2 = 6 7  sin rp, y3 = (ta - 7%)/2 (7) 
/ 

Since the deformation is symmetric about the x3-axis, we see that 

(4) the planes x3 = conatant in the undeformed state become the paraboloidal surfaces 6 = constant 
in the deformed state ; 

(ii) the surfaces-xL2 + = constant in the undeformed state become the surfaces q = constant in the 
deformed state ; and 

(iii) tan-1 (x2/x1) = 9. 

Thus, the deformation is given by 

E = ,f (x3), = F (x12 + ~ 2 ~ ) ~  9 = tan+ (x2/x,) 
, - . * -  _ _ "  (8) 

The strain components are given by 

2 e22 = 4 xz2 pt2 (f2 f q2) + t3 v2 xI2/(xl2 f xZ2)2 - 1 , 
2 e,, = f1'(S*2 + q2) - 1 , I 

. / -  
- (91 

2 e,z = 4 x, 5 2  FI2 ( f 2  -t 72) - x1 x2 t2 72/(x12 4- x22)2 , 
e23 = $l = 0. ,. 

I 
The stress tensor (2) for compressible material ha; components 

/ 

.y2 a w  p 1  = - - 
d 1 8  a e,, ' ,. , 

+ 5 2 =  - 

1 
1 

- 

P =  a W a W  a W  + x - ~  - a e22 

where 
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The metric tensor for the strained state of the body is given by 

f 2  + q 2 0  " 

(12)  
0 0 t2q2 

The equations of equilibrium (5) reduce to 

~ 1 1  , + ( 2  rl,, + rj2, + r 3 , , )  + rla2 p2 -t r 1 3 3  ~ 3 3  = o 
T22 , + (TIl2 + 2 + I '33&T2 $- PI, 1111 + 1'233 T 3  = 0 

, 'I 
1 (13) TZS , + ( 1 ' 1 , ~  + r322 + 3 1 ' 3 ~ ~ )  ~3 = 0 . a J 

The above equations of equilibrium, as they itand, do not seem to admit a solution. However, a solution 
can be obtained if we assume to be so small8 that q' may be neglected when compared with 7 ,  and that 
q = F (x: + xdB) = K (x12 + x;) l l2 .  Physically this implies that the paraboloidal shell is within that 
paraboloidal shell for which q = constant. I t  is further noted that the deformed shellis shallow or deep 
according as ti ,  i = 1,  2, are large or small respectively, -where ti',., i = 1, 2, give the boundaries of the 
deformed shell. Then the expressions corresponding to (9) to (12)  reduce to - 

f ' 2  a W  T 1 1 =  - . --- KL a W  7 , 
p 9  = --. -_ 

d 1 3  ' - 2/ 13  a ell I 
'Kt - a W  (15) 

If33-,??! . -  F12 = T 3 1  = T ? 3  = 
v 2 2 / 1 3  sell ' 

0 ,  

Then, the second and the third equations of equilibrium (13) are satisfied identically. The first equation 
gives 

s ,- 

\a-w f ' v 2 -  a ( - ~ e ~ ) + j t ~ p ( - ) + j ~ $ ~ f i ) - 2 ~ 2 f ( ~ ) = ~  
'3 t a '333 a e33 

(18) 

Now 

Prom (18) and (19), we get 

a TV a - - ( f ~  6 2  
a E aE - (20) 

- whieh on integration gives 

where W,, is a constant. 
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This gives 

The non-vanishing physical components of stress, from (15) to (17) are given by 

B O U N D A R Y  CONDITIONS 

I. If - , ( = 1 2 ,  are the applied normal tractions on the i w  and the outer @Mimes of the shell, 
we have 

, 
all = - Bi when , i =J,%, (24) 

which on substitution in (23) gives- - 
1 

-- 8 4  f 4  5 w ( )  =a2, 
J ae33 4 = ti 

i = 1 ,  2. (25) 

Solving these, m get t h e ~ l u e s  of the ~ o a s t a n t ~  Wo a id  K .  I 
- - -. 

o n  t8e edge 9 = a, the distributions of tractions per unit arc between rp and p + 4 give rise to s 
force ,PI and a wuplc MI about the origin given by 

4 2  

- 
2l W Fl = . 1 f Z  -- ,/ 
3 el1 a w  ae, I ' ( W + W , ) ~ ~ -  - 

I1 

1 
i 

5, 

- i (261- 

M; = -" 2 1 f4-=-4 aw [ ( w  + w o l d  f a ell 
I1 

a e33 ! 
- .  - 

When the material is incompressible, I,  = 1. Then from (16) we have 

f 1 - -  - - -- 
a x 3  - K2 f 3  ' 

'B 
which on integration gives - 

where B is an arbitrary constant. 

As the internal and the external boundaries of the paraboloidal shell are given by f=  5, , i = 1,2, 
respectively which were initially the planes x, = al and x3 = o,, equation (27) gives 

rn 

11s 
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and 

The equations of equilibrium in this case, in view of the components of stress tensor (4), give 

The equations (30) show that p is a function of alone. 

Equation (29) in view of (19) gives 

Then the physical components of stress axe given by 

all = W  + TV,, 

a W  1 .- a W  azz = a,, = W + W o  + KZ E2 ---- - -T- 

a ell K4 E4 I e33 

11. If the inner boundary 5 = t, of the shell is free from tractions, we must have 

all = 0 when I = t l ,  

which on substitution in (32) gives 

w, = - w (I1) (33) 

On the outer boundary f = f2, we have to apply a normal traction R given by 

R = 01, ((2) = W (t2) - W  ( t i )  (34) 

On the edge 7 = a ,  the distribution of tractions between cp and 9 + d::, give rise to a force & and a 
couple Ma about the origin which are given by 

Thus we see that to bend a circular block into a paraboloidal shell, we require a resultant force P and 
a couple M on the edge together with a normal traction R on the outer surface. 
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