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COMBINED LAMINAR AND TIjRBULENT FLOW OVER ROTATING CONES

V. N, D. MurrEY
Regional Engineering College, Durgapur
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An analysis has been carried out for the combined laminar and turbulent flow over rotating cones in an otherwise
undisturbed fluid. The momentum integral equations in meridianal and circumferential directions, which govern
the turbulent fluid flow over a rotating cone, have been solved in their dimensionless forms. A continuous eddy
diffusivity of momentum, suggested by Van Driest, has been adopted to obtain the veloeity components. Taking the
central laminar core into account, friction moment coefficients are calculated as functions of cone Reynolds number
Re,. The theoretical findings are compared with other theories and the available experimental data. o

NOMENCLATURE

= damping constant
= friction moment coefficient
mixing length constant

f

I

slant height

I

dimensionless slant height, Lu*/v
meridianal distance from the apex ‘
dimensionless meridianal distance from the apex, lu*/v

I

I

friction. moment

radius of the cone at I, I sin A

dimensionless radius of the cone, ru*/v

friction  velocity, +/r, Jp

resultant relative velocity

dimensionless resultant relative velocity, u/u*

total tangential velocity, v/u2, + utg -
— dimensionless total tangential velacity, wpfu* '
meridianal component velocity

circumferential component velocity

dimensionless meridianal component velocity, u,/u*
dimensionless circumferential component velocity, ug/u*
surface velocity

dimensionless surface velocity, (wr)/u*

perpendicular distance from the surface

= dimensionless perpendicular distance from the surface, zu*/»
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Symbols

= ratio of component shear stresses, r,/—r¢

= momentum houndary layer thickness

= dimensionless momentum boundary layer thickness, 8u*/»
= eddy diffusivity of momentum '
= meridianal component of shear stress
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‘7 = circumferential component of shear stress
s = total wall shear stress, \/,,2 T 7%

p = denkity .

A = half the apex angle of the cone

M = dynamic viscosity
= kinematic viscosity

w = angular velocity

Subscripts

1 = laminar

¢ = turbulent

w = -at the surface

¢ = critical =~

0 = outer most

Accurate information of fluid flow from rotating axi-symmetrical surfaces are essential in the designing
of rotating parts of many industrial equipments, as diverse as electric motors, gas-turbines and electrogyros.
A rotating cone forms an important geometry to be studied in detail since many rotating components can
be idealised to this surface.

When a cone rotates about its own axis in an otherwise undisturbed fluid, the tangential friction drag
at the surface imparts a circumferential velocity while the centrifugal force induces a meridianal velocity in
the fluid. The flow remains laminar near the axis of rotation, the rest of the cone area being under turbulent
flow. Wul demonstrated that Karman’s2 and Cochran’s® solutions for the laminar hydrodynamie field
over the rotating disc can be successfully applied for the cone if the Reynolds number for the cone surface
is defined as

2 o
Re, = @ L% Gua ' ' )
v . .

Herring & CGrosh?, in a more comprehensive studv, obtained friction moment coeﬂiment for the rotating
cone, under laminar flow, as :
M

Cy = =19 —0:5
M= T p iz, smE A, »35‘Reo (2)

Experiments with the rotating disc have shown that transition from.laminar to turbulent flow occurs
at a Reynolds number of 200,000. The problem of turbulent flow over rotating cone, within the knowledge
of the author, has not been subjected previously to analytical study. On the other hand, the case of rotating
dise, which is a particular case of conical surfaces, has received some attention. Karman? and Goldstein5,
_ adopting the 1/7th power law and the logarithmic profile for the pipe flow respectively obtained the friction
moment coefficient for rotating disc as functions of disc Reynolds number. Both these theories give radial
velocities which disagree with the experimental values of ~Gregory et alé, and further, the friction moment
coefficients are found satisfactory only at high Reynolds numbers. In view of this, an attempt to correct the
radial velocity profile was made by Richardson & Saunders?,

The present work was undertaken with a view to obtain realistic velocity profiles in the turbulent
boundary layer over the rotating cones (and discs) and consequently the turbulent friction moments inclu-
sive of the transition region. The analysis is carried out by first deriving the momentum integral equations
for the meridianal and tangential directions in their dimensionless forms. The concept of “Continuous Eddy
Diffusivity”, suggested by Van Driest?, is adopted to obtain the component velocity profiles. Taking into
consideration the central laminar portion near the axis of rotation, the overall friction moments for the
complete surface are evaluated by numerically integrating the local turbulent values over the surface, A
series of experiments were conducted with a rotating cone to supplement the existing data Whlch are paftly
reported here, while the complete experlmental results will be reported soon.
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 MOMENTUM INTEGRAL EQUATIONS

The momentum integral equationsin the meri-
dianal and eircumferential directions may be written
by considering an elemental ring of surface width df at
a distance [ from the apex of the cone (Fig. 1). -For
~ such an element, the increment of momentum of the

fluid in the meridianal of X-directionis 17 =~ =~

. +
Fig. 1 —Hydrodynamic Loundary layer over the rotating cone.

where 8 is the hydrodynamic boundary layer thickness at I=r/sin A. The centrifugal force on the element,
acting perpendicular to the axis of rotation is -

) s
. —2mr [p J\Z’? dz 16” '
. g

The component of this force along the meridian together with the increment of momentum must he balanc-
ed by the frictional forces acting on the elemental ring which is equal to 277 dl =, where ,= meridianal
component of the wall shear stress. Thus, the momentum integral equation in the meridianal direction can
be written as

) 8

d T ST

Pt l ,2d __J‘ 2d=_ X e

dl[ fumz] u¢_z e : o (3)~
by h

The momentum integral equation in the circumfereﬁtial direcfion is obtained by ba-lancihg the increment
of moment of momentum of the fluid in the element of the boundary layer with the moment of frictional forces
about the axis of rotation. " .

The increment of moment of momentum about the axis of rotation is
8

%[ Z»wr?pf%u;bdz ]_dl
@l A

while the moment of the frictional forces on the element considered is-
| —2mr2dlry

where 7¢ = circumferential component of the wall shear stress, Hence the momentum integral equation in
the circumferential direction becomes S

d 2 : ‘ .
= [ lzf Uy u¢.dz] = — PT¢ o 4)
) .0 S : ‘
The component shear stresses may be replaced by the total shear stress at the wall and the ratio of the com-

. ponent shear stresses.
If ‘

R - w
ce=n =T :
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(74 IS negative since the flow direction is taken as poqlhve) the total shear stress at the wall can be written as
T =—71$1+a?

~and the component shear stresses will then become
o : —1

n= T e T iga

Introducing these terms for the component shear stresses in (3) and (4) and when made dimensionless by
making use of the definitions given in the nomenclature, the resulting dimensionless momentum integral
equations in the meridianal and circumferential directions will be

’ s+ |
. _%:[quzzdz — ﬂ+ 4 l f . ] =:;7T%?§? 5)
and
s+
| —d;‘lr[ l+2‘(!‘(u+wu+¢dz+] — \T—lligl+2
By integrating, (6) vcan be rewritten as ’
3 o s+ 48

2 l : |
I+ oute det | = —
[ T

where the upper limit on the outer integral, i.e. the braces, is evaluated numerlcally at the value of I+
corresponding to 8+. This solution procedure is outlmed later.

VELOCITY PROFILES

In order that the momentum integral equations may be integrated, it is necescary to select a suitable
velocity distribution in the turbulent boundary layer. This begins with the expression relating the time
averaged shear stress and the velocity gradient within the boundary layer as

d
= (p+ pen) El%

The first term in the parenthesis, the viscosity p, represents the laminar contribution to the shear; while the
second term, the eddy diffusivity of mementum ey, represents the turbulent contribution. In dimensionless
form, the above expression becomes

] T .=[1+eM/v]%‘; (8

If the variation of /7, across the boundary layer were known and expressions for ey /v were avail-
able, velocity profiles may be calculated by mfegmfmg (8). Because of the enormous difficulties in determin-
ing the actual shear stress distribution within the boundary layer, it is common practice to postulate some
reasonable distribution for the shear stress. While solving the turbulent boundary layer over the flat plate,
Diessler? set 7/7,, = 1 and obtained very satisfactory velocity proﬁles and- a frlc*lon factor—Reynolds
pumber relationship. -

Van Driest® proposed a . expression for the momentum Pddy dlfﬁlSlVIty as

2 dyt
“dat

eufy = K+ o+ [ 1_——exp(—~z+/A+)]

where A+ is a damping constant of the turbulence field and K + is the universal mixing constant. Substitut-
ing for ey /v in (8) and making =/r,, = 1, the velocity distribution may be shown to be
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2+
2 dz+

ut = f
L+ V1§ 4R+ 4% [ 1—exp (— 2+/dH) P

9

It is apparent that the agreement between (9) and the experimental values will depend on the choice of the
damping constant 4+ which characterises the influence of the wall and the universal mixing constant
K+, VanDriest8found that by letting 4% = 27and K+ = 0-4, very good agreement isobtained between
(9) and the pipe flow experimental velocity profiles of Laufer!?, Followmg Goldstein’s? work on rotat-
ing disc, the resultant relative velocity in the boundary layer is assumed to be given by (9). At the edge of the
boundary layer, the resultant relative velocity must equal the surface velocity and therefore

§+

(10)

. 2dz+
+ o=yt = -
W) * !1‘*‘\/14—4[{“ e+? [ 1—exp (—2t/4+) P

where 8+ is the dimensionless hydrodynamic boundary layer thickness. It now remains to make some suitable
assumptions to resolve the resultant relative velocity into meridianal and circumferential components which
must he consistent with the boundary conditions at the solid surface and at the edge of the boundary layer,
These boundary conditions in dimensionless form ave

2+ =0, whg = (wr)*t, ut, =0
2+ =8+, u+¢:0, ut, =0

Both Karman? and Goldstein?, in their analyses of turbulent boundary layer over the rotating dise, assumed
that the component velocities were related to the resultant relative velocity by some function of «. Karman?
assumed a linear variation of « to obtain a radial velocity which is zero at the edge of the boundary layer,
whereas Goldstein’ assumed that « was constant and that the velocity component% were related to the
resultant relative velocity in the same way as the component shear stresses were related to the total value
at the wall.

A combination of Karman’s? and Goldstein’s’ assumptions is made in the sense a new value of « is
defined which is not constant so that

% = (wr —ug)

«, is assumed to be some function “of 2/ which need not be linear. Since the resultant relative velocity is
given by

= Vi, + (wr — Ug )?
it can be shown that the relative component velocities, after being made dimensionless, are
u+¢ — (wr)‘l‘ — ~V1—_——;: .
+ *% L (11)
o
e Vi + af, .

From (11), it can be seen that at 2+ = 0, wrg = (wr)+ and ut, = 0 since u is equal to zeto. However, &b
#+ = 8+, for uty and ut, to be zeroes, «, must be zero since u+ = (wr)*. This leads to an assump
tion that «, may be represented by an expression

o= [1—(z/8)"] : (12)
-which will meet the boundary conditions specified above.” The value of ‘n’ may be selected to give the best

agreement between the measured and theoretical velocity profiles, and friction moments, This is later shown
to be 0-2. Having selected the velocity profiles, noting that

2

Re='wl

sin A = (wr)t I+ (13)
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the integral (5) and (6) can now be solved numerically in the following manner: (i) Values of &+ and
o are assumed and the integrals in (5) and (6) are evaluated for the assumed distribution of 4+, and utg.
(ii) Hence the value of I+ for theselected value of 3+ is obtained from (7). (iii) Using this value of I+, (5) is
evaluated to obtain «. For the first attempt, this value of « does not agree with the initial assumed value.
This anomaly may be corrected using an iterative procedure until the two values agree within any tolerable-
allowance. (iv) Then the corresponding value of Reynolds number is obtained from (13). By varying 8+ and
repeating the procedure, the growth of the hydrodynamlc boundary layer and the varlatlon of o may be
found as functlons of Reynolds number. - -

FRICTION MOMENT AND ITS COEF}FIGIENT

The res1stmg moment from the apex upto L may be written as

= — f 2 177'2 ¢ dl
Bu_ﬁ, from (1), it can be seen that
Pt J : ; . . 8
d [ , .
—r2 7 dl il 2 p | uyupdz | dl

Hence the friction moment can be written as

8 H

r . 1 . . .
M=2"fd {lesm?)\pfuxwdz . (14)
J
s o ;

Thls equation, if evaluated between the limits zero and L,, will yield the fmcnon moment for the whole
surface under turbulent flow. However, in pracmcal cases, there is always a portion near the axis of rotation

whlch is under laminar flow.

If L, is the oritical slant helght at which transition from laminar to turbulent flow takes place, the fric-
tion moment due to turbulent region will be given by (14), when integrated between the limits L, and L,

Denoting the friction moment due to turbulent region as M,
8

¢
M,=2wpf d i I2sin? A f Uy Up Az }
‘ Le 0 o
The total friction moment is obtained by adding to this the moment due to laminar region. Defining the
friction moment coefficient .as ) . , . A ) N

Cit = ———
3 p %1%

. where vy = w Ly s’n Aand 7y = L;sin M. The friction moment coefficient for the combined laminar and

turbulent flow may be written as
)

27rpfd~)\- 12 m“\fuxu.?dz } +M,
0

% p L5, w?sin® A

Cy =

which when made dimensionless, becomes
3"'0 . 8+,

. 4n I+, \2 1 em,
— 4+ ut - -+ el S
0¥ = ~Gr)F Regsin A U“ w Whe dot (L+ ) f““ uty dz ]+ o TP o S0 A
0 0

where 8+, is the dimensionless hydrodynamm bounda,ry layer thickness at L+, at which point the Reynolds
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number is ‘Tie,, the Qorrespondmg Va,lues at the cmtlcal point being 8+0, L +c and Rec Subs‘mtutmg for the
Jaminar friction moment from (2), the fmctmn moment coefficient for fhe entire- cone undel combined
laminar and turbulent ﬂows can he written as. » , SR

S+, T ~j3+'

OM i (“'”0)+ Re0 sm )\ [ f u+ u+¢’ det — ( L"‘ ) f u+ u+¢ dot ] + }
061952 [ I+, ]5

v Re, Re. sin A | Ly

It is to be noted that 0:61952 7 = 1-935 and when A = 90, (15) yleld% the overall fnomon moment co-
efficient for one side of the dise.

(15)

All the numerical integrations were performed by using elther the fourteen point Gaussian quadrature
or Simpson’s one-third rule. In performing the mtegratlom finer mthes were used over areas where the
- 8+

curves have higher gradients, as for example, while integrating the quantity f uwt?, dzt, finer meshes

. 0 ‘

were used both near the surface and towards the outer edge cf the boundary layer. It was also ensured -

that further reduction in infegration steps did not yield any substantial improvement in accuracy.
‘ RESULTS AND DISCUSSION

Fig 9 shows the tangential velocity i.e. wtp = Vuts, -+ w3 plotted agalnst 2t / 8+ for
varying Reynolds number while Fig. 3 shows measured values over a rotating disc by Cobb & Saunders't
along with the theoretical curves of Karman?, Goldsteins and of the present analyns for a disc Reynolds
pumber of 440,000. Tt can be seen that the gradient of total tangential velocity near the wall increases with
Revnolds number this being a characteristic of turbulent velocity profiles. The experimental values

of Cobb & Saundemn show very good agreement with the present theory. Aswas discussed earher,
the meridianal (radial for the disc) velocity distribution over the rotating cone is of great im-
portance in calculating the mass flow in the meridianal (radial) direction. Fig. 4 shows the distribution
of meridianal velocity for different Reynolds number while Fig. 5 shows the measured and theoretical values. -
Agreement of the thpory with the present experimental values seems to be very good. But the present theo-
retical curve is some 15%, higher than the measured values by Gregory et alé. The reason for this may be due
to the difficulty of measuring velocities close to the wall as suggested by the authors themselves®. However,
while Fig. 5 shows that the proposed profile lies within the theoretical curves of Karman2, Goldstein and
Dorfman??, it does give a substantially lower values than those of Richardson?. The theoretical flow direction
i.e. the angle the total tangential velocity Vector makes with the circumferential direction is obtained

0y 0.0
084 0.8 .
o EXPT. 08B (ref 1)
.. -w= KARMAN (ref, 2 )
t N -
0.6 L, s 3 o0.¢4 ~--GOLDSTEIN (ref.5)
+ Re = 2455X10 v A " =~ PRESENT ANALYSIS
- 5 Re = 5.01X105 + |
13 Re & t.25%K10° >
0.4
0.2
o)
2 0.2 0.4 0.6 0.8 10
z#
s
Fig, 2—Total tangential velocity distribution, Fig, 3—Tota) tangential velocity over the rotating disc.
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0.20-
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'Re.—.s.‘OIXlos [ BN
feasxi® ool L
A o Eo\ :
3 ~PRESENT ANALYSIS
2 0.06 FORS ¥ RICHARDSON (ref. 7).
e ST 024l T ~DORFMAN-(ref.i2.): :
3 N\ EXPT. GREGORY eta.t.(ref é ) :
_ z /\Z KARMAN (ref.2 )"
0.044 . ' i il Al GOLDSTEIN
p , T o-o81lj (ref. 5)
T
0.024 ; 0.04i
° L3 v Y T L 0.00 - v T r 1 \
o 0.2 0:4 . 06 0.8 *O o 1 0.2 o4 _ Os o8 - 10O
z L |
& & ,

Fig. 4—Meridianal (radial) velocity” distribution. Fig. 5—Radial velocity distribution over the rotating diso.

from the, ratio of meridianal and -circumferential velocity components and a comparison of the
-same w1ti the present experimental values and those of Gregory et al.® is done in Fig. 6. It was
explained earlier that the values of ‘the velocity components and therefore the flow direction de-
pended on the assumption of the variation of &, and to'obtain the agreements shown in Fig. 2 and "3, the
exponent ‘n’ in (12) was made equal to 0-2. Existing theories do not predict the flow direction throughout
the boundary layer but give only the ratio of the radial and circumferential components of shear stress
at the surface. This is most important since the circumferential component of wall shear stress is the direct
contribution to the friction moment of the rotating surface. The values of « obtained from all the theories

are therefore presented in}Table}l.

40-
304
: - 199 €,z 0-61952 T RS sin &
o -2.0
o x X xx . 3 PRESENT
® 204 9 x XX : 22" THEORY, Egn.15
x X X ) M WITH Rec ='2.5 X 105
X X EXPT. GREGORY et al (ret 6) .
P — PRESENT THEORY o ~2.34
104 PRESENT | o Re 2.56 x10° 3
EXPT [ o Re 2 74 X 10° ~2.44 {
\
-2.54 N
o] 2.6 \\
1 T T T T 1 - T T T T T T T T T T ]
o} (o] (o'} 06 0.8 10 4.4 4.8 5.2 5.6 6.0 6.4 68
z* g0 Re, ;
st :

Fig. 7—Friction moment coefficient for cones and one sxde of

Fig. 6 —Meagured and theoretical turbulent flow direction,
) ) Lo v the disc,

98



MU:ME#Y{ Lamiha,r and Turbulent Flbw :

.c.s-\x I 'Cm Z 3.,57 Re~ 95 (ref.3)
N X . ,Cu=0146 n’e-’o-z(l‘ef:z).‘

B et N S
~
-84 - "’_‘_"{x

WITH Re_ = 2.5 X 10°

’-wmc Re = 2.2 x10°

~2.04 ‘ "R 48‘
© THEODORSEN & REIGER (ref. 16)

-2.24 x KEMPF (ref. 1a)
o SCHMIDT (ref.15)

togis €u

- 20‘ 1
- 2.6+ . ¥ s e et - ¥ - Y r v ]
4.4 45 . 48 5.0 5.2 5.4 5.6 5.8 6.0 6.2 6.4 6.6 5.2
"03 10 Ree
Fig. 8—Friction moment coefficient for both sides of the disc.
TasLE 1
COMPARATIVE VALUES OF &
Re T k o Karman e Goldstein Dorfman Present
analysis
3% 108 ; 0-162 0333 0-373 0- 3089
5%10° 0-162 0-333 0370 0-3646
7 %108 0-162 0:333 0-359 . 0-3521
1x10¢ 0-162 0-333 0- 350 0° 3465

5X108 0-162 ‘ 0-333 ' 0-341 0-3318

It is seen that & from two of them decreases while those of Karman? and Goldstein® remain constant .
with the increase of Reynolds namber. This decrease of « indicates that the flow becomes more circumferen-
tial with the increase of speed, a fact which was verified experimentally on rotating disc by Bussman1s,

Fig. 7 shows the friction moment coefficient for the cone and for one side of the disc ( A = 90°) plotted
against Reynolds number. Present and other theoretical friction moment coefficients for both sides of the disc
along with the experimental measurements of Kempf!*, Schmidt!5 and Theodorsen & Reigerlé are pre-
sented in Fig. 8. The present theory takes into account the laminar portion of the boundary layer around the
axis of rotation andisshown as full lines based on two different eritical Reynolds numbers. It is seen that the
agreement between the theory and experiment depends on the selection of the critical Reynolds number,
a precise measurement of which is difficult in practice. Karman?® formula does not allow for the central laminar
portion and is therefore applicable at very high Reynolds numbers only.
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