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An analysis has been carried out for the combined laminar and turbulent flow over rotating conw in an otherwise 
undisturbed fluid. The momentum integral equations in meridianal and circumferential directions, which govern 
the turbulent fluid flow over a rotating cone, have been solved in their dimensionless forms. A continuous eddy 
diffuaivity of momentum, suggested by Van Driest, has been adopted to obtain the veloeity components. Taking the 
central laminar core into account, friction moment coefficients are calculated as functions of cone Reynolds number 
Re,. The theoretical findings are compared with other theories and the available experimental data. 

N O M E N C L A T U R E  

- 
A + = damping constant 
Ca = friction moment coefficient 
K + = mixing length constant 
L = slant height' 
L + = dimensionless slant height, Lu*/v 
1 = meridianal distance from the apex 
1 + = dimensionless meridiamal distance from the apex, lu*/v 
M = friction moment 
r = radius of the cone a t  1 , l  sin X 
r -t = dimensionless radius of the cone, ru*/v 
u* = fricOion velocity, 2/QP 
u = resultant relative velocity 
u + = dbensionless r e d t a n t  relative velocity, u/u* 

uT = total tangential velocity, $- 

uT+ = dimensionless tot&1 tangential uekbcity, uT/u* 

. u, = meridiand componen& velocity 
q = circumferential component velocity 

us+ = dimensionless meridiailal component velocity, 'U~ZE* 

q +  = dimensionless circumferential component velocity, q/zc* 
wr = s11rface velocity 
(COP)+ = dimensionless surface velocity, (or)/u* 
z = perpendicular distance from the surface 
z+ = dimensionless perpendicular distance from the surface, ZU*/JJ 

a = ratio of component' shear stresses, ~ ~ 1 - 7 1 ~  . . 
6 = momentum boundary layer thickness 
S+ = dimensionless momentum boundary layer t~hickness, Su*[, 

= eddy diffusivity of momentum 

ra = meridianal component of shear stress 



T+ 
= circumferential component of shear stress 

TW - total wall shear stress, 2/,2, + 729 

p = density 
X = half the apex angle of the cone 

p = dynamic visco~it~y 
= kinematic viscosity 

w .= angular velocity 

I = laminar 
t = turbulent 
w = a t  the surface 
c = critical 
0 = outer most 

Accurate information of fluid flow from rotating axi-symmetrical surfaces are essent,ial in the designing 
of rotating parts of many industrial equipn~ents, as diverse as electric motors, gas-turbines and electrogyros. 
A rotating cone forms an important geometry to he studied in detail since many rotating components can 
he idealised to this surface. 

When a cone rotates about its own axis in an otherqise undisturbed fluid, the tangential friction drag 
a t  the surface imparts a circumferential velocity while the centrifugal force induces a meridianal velocity in 
the fluid. The flow remaina laminar near the axis of rotation, the rest, of the cone area being under turbulent 
flom. Wul demonstrated that Karman7s2 and Cochran's3 solutions for the laminar hydrodynamic field 
over the rotating disc can be successfully applied for the cone if the Reynolds number for the cone surface 
is defined as 

w L2, Re, = - sin h 
v 

Herring & Grosh4, in a more comprehensive study, obtained friction moment coefficient for the rotating 
cone, under laminar flow, as 

Experiments with the rotating disc have shown that transition fr~m~larniizar to turbulent flow occurs 
a t  a Reynolds number of 200,000. The problem of turbulent flow over rotating cone, within the Imowledge 
of the author, has not been subjected previously to analytical study. On the other hand, the case of rotating 
disc, which is a particular case of conical surfaces, has received some attention. Karman2 and Goldsteins, 
adopting the 117th power law and the logarithmic profile for the pipe flow respectively obtained the friction 
moment coefficient for rotating disc as functions of disc Reynolds number. Both these theories give radial 
velocities which disagree with the experimental values of Gregory et al6, and further, the friction moment 
coefficients are found satisfactory only a t  high Reynolds numbers. In  view of this, an attempt to correct t,he 
radial velocity profile was made by Richardson 8: Xaunclers'. 

The present work was undertaken with a view to obtain realistic velocity profiles in the turbulent, 
boundary layer over the rotating cones (and discs) and consequently the turbulent friction moments inclu- 
sive of the transition region. The analysis is carried out by first deriving the momentum integral equations 
for the meridianal and tangential directions in their dimensionless forms. The cbncept of "Continuous Eddy 
Diff~~sivity", suggested by Van Driest8, is adopted to obtain the component velocity profiles. Taking into 
consideration the central laminar portion sear the axis of rotation, the overall friction moments for .the 
complete surface are evaluated by numerically integrating the local turbulent values over the surface. A 
series of experiments were conducted with a rotating cone to supplement the existing data which are pa~t ly  
reported here, while the complete experimental rewlts \+ill be reported soon, 
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M O M E N T U M  I N T E G R A L  E Q U A T I O N $  

The momentum integral equations in the meri- 
diailal and circumferential directions may be written 
by considering an elemental ring of surface width dl a t  
a distance 1 from the apex of the cone (Fig. 1). For 
such an element, the increment, of momenthm of the 
fluid in the meridianal of X-direction is 1' 

8 

- $ - [ , n r p  /u2,dz ] d l  

0 

L j. 

Fig. 1-Hydrodynamic Loundary layer over the rotating cone. 

where 6 is the hydrodynamic boundary layer thickness a t  l=r/sin A. The centrifugal force on the element, 
acting perpendicular to the axis of rotation is 

The component of this force along the meridian together with the increment of momentum must be balanc- 
ed by the frictional forces acting on the elemental ring which is equal to 2ar  dl T,, where T,= meridianal 
component of the wall shear stress. Thus, the momentum integral equation in the meridianal direction can 
be written as 

S 8 

1 7, d [ 1 / us, dr ] - f u2+r7z = - - 
d l  P (3) 

0 0 - 

The momentlxm integral equation in the oircumfcrential direction is obtained by balancing the increment 
of moment of momentum of the flnid in the element of the boundary layer with the moment of frictiorlal forces 
about the axis of rotation. 

F The increment of moment of momentum about the axis of rotation is 
8 

"[ dl 2 - r 2  p J . (d ,ydr ]  

0 

while the moment of the frictional forces on the element considered is 

- 2 n r 2  dl  T$ 

where T$ = circumferential component of the wall shear stress. Hence the momentum integral equation In 
the circumferential direction becomes 

12 Tjp 2- dl [ 1 2 j a u x u + l b ]  = - - 
P 

(4) 
0 

The component shear stresse~ may be replaced hy the t o t d  shear stress a t  the wall and the ratio of the com- 
ponent shear stresses. 
If 

'SF " = 72 / -7$, . . 
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( r d  is negat,ive since the flow direction is taken as positive) the total shear stress at the wall can be written as 
r w  = - 7 9 4 1  + 61.2 

and the component shear stresses will then become 

Introducing these terms for the component shear stresses in. (3) and (4) and when made dimensionless by 
niaking uBe of the definitions given in the nomenclature, the resulting dimensionless momentum integral 
equations in the meridianal and circumferential directions will be 

and 

By integrat,ing, (6) can be rewritten as 

where the upper limit on the outer integral, i.e. the braces, is evaluated numerically at  the value of 1+ 
corresponding to S+. This solution procedure is outlined later. 

V E L O C I T Y  P R O F I L E S  

In order that the momentum integral equations may be integrated, it is necescar? lo select a suitable 
velocity distribution in the turbulent boundary layer. This begins with the expression relating the time 
averaged shear stress and the velocity gradient aithin the boundary layer as 

The first term in the parent,hesis, the viscosity p, represents the laminar contrihu-f ion to the shear; while tlhe 
secorld term, the eddy diffusivity of mcn=entiinl E M ,  represents the turbulent contribution. I11 dimcn~ionless 
form, the above expression becomes 

If the variation of 7/rW across the boundary layer were known and expressions for EB /v  mere avail- 
able, velocity profiles map be calculated. by integrating (8). Because of the enormous difficulties in detcrmin- 
ing the actual shear stress distribution aithin the boundary layer, it is common practice to poslulate some 
reasonable di~t~ribution for +he shear stress. While solving the turbulent boundary layer over the flat plate, 
DiesderS ~ e t  r/rw = 1 and obtained very satisfactory velocity profiles and a friction factor--Reynolds 
number relationship. 

Van Driest8 proposed a .  expression for the m~mentum eddy diffusivity as 

where A+ is a damping constant of the turbulence field and K + is the universal mixing constant. Substitut- 
ing for E M / V  in (8) and making r/.rw = 1, the velocity distribution may be shown to be 
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It is apparent that the agreement between (9) and the experimental values will depend on the choice of the, 
damping constant A f which characterises the influence of the wall and the universal mixing constant 
K+. Van Drieats found that by lettingA 9 = 27 and K + = 0.4, very good agreement is obtained bet'ween 
(9) and the pipe flow experimental velocity profiles of Lauferlo. Following Goldstein's6 work on rotat- 
ing disc, the resultant relative veloaity in the boundary layer is assumed to he given by (9). At the edge of the 
boundary layer, the resultant relative velocit'y must equal the surfa,ce velocity and therefore 

where 6+ is the dimensionless h.ydrodynamio boundary layer thickness. I t  now remains to make some suit able 
assumptions to resolve the resultant relative velocity into meridianal and circli~nfere~ltial components which 
must be consistent with the boundary conditions at the solid surface and at the edge of the bounclarv layer. 
These boundary conditions in di~nensionless form are 

a+ = S + ,  u+$ = 0, u+, = 0 

Both Karman2 and Coldstein5, in their analyses of turbulent boundary laym over the rotating disc, aqsumcd 
that the component velocities were related to the resultant relative velocity hy some function of a. Karma@ 
assumed a linear variation of a to obtain a radial velocity which is zero a t  the edge of the boundary layer, 
whereas Goldstein6 assumed that a was constant and that the velocity components were related to the 
resultant relative velocity in the same way as the component shear stresses were related to the total -value 
at  the wall. 

A combination of Karman's2 and Goldstein's5 assnmptions is madc in the sense a new value of a is 
defined which is not constant so that 

a, is assumed to be some function of 216 which need not he linear. Since the resultant relative velooity is 
gi~7en by 

u = .\/a',+ ( w r  - - q p  
it can be shown that the relat,ive compment, velocities, after being made dimensionless, are 

From (II), it can be seen that at zf = 0, u+ + = (wr)+ and u+, = 0 since u+ is equal to zero. Hod etret, tlf, 
z+ = a+, for uf g and u+, to be zeroes, a,  must be zero since u+ = (wr)+. This leads to an asst~bp- 
tion that a, may be represented by an expression 

which will meet the boundary conditions specified above. The value of 'YI? may be selected to give the hefit 
agreement between the measured and theoretical velocity profiles, and friction moments. This is later ~ I ~ O L V I I  
to be 0.2. Having selected thc velocity profiles, noting that 

012 - sin A = (cur)+ I+ 
v 
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the integral (5) and (6) can now be solved numerically in the followilig manner : (i) Values of 8+ and 
u are assumed and the integrals in (5) and (6) are evaluated for the assumed distribution of u+, and u++. 
(ii) Hence the value of I+ for the selected value of 6+ is obtained from (7). (iii) Using this value of 1+, (5) is 
evaluated to obtain a. For the first attempt, this value of u does not agree with the initial assumed value. 
This anomaly may be corrected using an iterative procedure until the two values agree within any tolerable 
allowance. (iv) Then the correspondir~g value of Reynolds number is obtained from (13). By varying 6f and 
repeating the procedure, the growth of the hydrodynamic houndpry layer and the variation of a may be 
found as furictions of Reynolds number. 

F R I C T I O N  M O M E N T  A N D  I T S  C O E F F I C I E N T  

The resist,ing moment from the apex upto L may be written as 

J 
0 

Rut, from (4), it can be seen that  
R 

Hence the friction moment can be written as 

I 5 
J 

(14) 
0 0 

This eq~at~ion, if evaluated between tthe limits zero and Lo, will yield the friction moment for the whole 
s'wface under turbulent flow. However, in practical cases, there is always a portion near the axis of rotation 

\ which is under laminar flow. 

If LC is the critical slant height'at nhich transition from laminar to turbulent flom takes place, the fric- 
tion moment due to turbulent region will be given by (14), when integrated between the limits LC and Lo. 
Denoting the friction moment due to turbulent region as Mt, 

The total friotion moment is obtained by adding to this the moment due to laminar region. Defining the 
friction moment coefficient as 

where 9, = w Lo s:n X and ro = Lo sin A. The friction moment coefficient for the combined laminar and 
turbulent flow may be written as 

Lo S 

2 ~ p  / d (  12sin2h / t ~ # u + d z  ) + d l l  

CM = LC 0 
4 p  Lso w2 sin6 h 

which when made dimen.sionless, becomes 

where is the dimensionless hydrodynamic boundary layer thickness at L+, at which point the Reynolds 
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number is Leo, the oorrespondhg values a t  the critical point being a+,, Lf, and Re,. S~bstit~ut~irrg for the 
laminar friction moment from (21, the friction rdoment ccefficient for tlte entire cone under combined 
laminar and turbulent flows can be written as 

a+, 
4 77 c,= - 

(oro)+ Re, sin h [?:+% 'u,+,$ gz; - ( - '+q2 1 u+. u++ dz+ ] f 
0 

L+o 
0 

0.61952~ L+, 5 

+ .\/=sin A [TI (15) 

It is to he noted that 0.61952 n = 1.935 find when h = 90, (15) yields, the overall friction moment co- 
efficient for one side of the disc. 

All the numerical integrations were performed by using either the fourteen point Gaussian quadrature 
or Fimpson'soone-third rule. In performing the integrations, finer meshes were used over areas where the 

curves have higher ,gradients, as for example, while integrating the quantity uf 2, dzf, finer meshes i" 
0 

were used both near the surface and towards the onher edge cf the boundary layer. It was also ensured 
that further reduction in integration steps did not yield any substantial improvement in accuracy. 

R E S U L T S  A N D  D I S C U S S I O N  

Pig. 2 shows the tangential velocity i.e. z c t T  = 2/u+~* + plotted against e+ /.a+ for 
varying Reynolds number while Pig. 3 ,showsn~easurecl values over a rotating disc by Cobb & Saundersll 
along with the theoretical curves of Karman2, Goldstein5 and of the present analysis for a disc Reynolds 
number of 440,OC)O. It can be seen that the gradient of total tangential velocity near the wall increases with 
Reynolds number, this being a characteristic of turbulent velocity profiles. The experimental values 
of Cobb & Saundersll show very good agreement viit,h the present theory. As was discussed.earlier, 
the rneridianal (radial for the disc) velocity distribution over the rotating cone is of g e a t  im- 
portance in calculating the mass flow in the meridianal (radial) direction. Pig. 4 shows the distribution 
of meridianal velocity for different Reynolds number while Fig. 5 shows the measured and theoretical valuea. . 
Agreement of the theory with the present experimental values seems to be 17ery good. Rut the present, theo- 
retical curve is some 15% higher than the measured values by Gregory et al6. The reason for this may he due 
tp the difficulty of measuring velocities close to the wall as suggested by the authors themselvesa. However, 
while Rg. 5 shows tha,t the proposed profile lies within the theoretical curves of Karman2, Qoldstein5 and 
Dorfmanl', i t  does give a substantially lower values than those of Richardson7. The theoretical flow direction 
i.e. the angle the total tangential velocity vector makes with the circumferential direction is obtained 

Fig, 2-Total tangential velocity ,distribution, 

EXPT. COB8 (ref I I ) --- KARMAN ( ref. 2 
-.-GOLDSTEIN (ref. 5 - PRESE NT ANALYSIS 

0 0 2 0 . 4  0 . 6  0 8 
2 + - 
6' ' 

Fig, +-Total $angentid velocity over the rotating disc. 



from thc ratio of meridianal and circ~~mferential velocity components and a comparison of the 
same with the present experimental values and those of Gregory et a l . V s  done in Fig. 6. It was 
explained earlier that the values of the velocity cornpnents and therefore the flow direction de- 
pended on the assumption of the variation of a, and to obtain the agreements shown in Fig. 2 and-3, the 
exponent 'n' in (12) was made equal to 0.2. Existing theories do not predict the flow direction throughout 
the boundary layer but give only the ratio of the radial and circumferential components of shear stress 
at the surface. This is most important since the circumferential component of wall shear stress is the direct 
~ont~rihution to the friction moment of the rotating surface. The values of a obtained from all the theories 
are therefore p r e ~ e n t e d ~ i r ~ ~ T a b l e ~ l .  

Fig. 6-NealJured and theoretical turbulent flow direction. Fig. 7-Friction moment coefficient for oonee and one side of 
- tho disc, 



Fig. &Friction moment coefficient for both sides of the disc. 

COMPARATIVE VALUES OF a 

Re Karman Goldstein Dorfman Present 
analysis 

3x106 0.162 0.333 0.373 0.3989 
5 X lo5 0.162 0.333 0.370 0.3646 
7 x lo5 0.162 0.333 0.359 0.3521 
1 X lo6 0.162 0.333 0.350 0 3465 
5 X lo6 0.162 0.333 0.341 0.3318 

It is seen that a from two of them decreases while those of KarrnanGnd Goldstein5 remain constant 
with the increase of Reynolds ntxmber. This decrease of a indicates that the flow becomes more circumferen- 
tial with the k~crease of speed, a fact which was verified experimentally on rotating disc by Bussmanls. 

Fig. 7 shows the friction moment coefficient for the cone and for one side of' the disc ( h = 90") plotted 
against Reynolds number. Present and other theozbetical friction moment coefficients for both sides of the disc 
along with the experimental measurements of Kempf14, Xchmid%16 and Theodorsen & Reigerla are pre- 
rrented in Fig. 8. The present, t>heory takes into account the laminar portion of the boundary layer around the 
axis of rotation and is shown as full lines based on t a o  different critical Reynolds numbers. It is seen that the 
agreement between the theory and experiment depends on the selection of the critical Reynolds number, 
a precise measurement of which is difficult in practice. Karman2 formula does not allow for the central lambar 
portion and is therefore applicable at very high Reynolds numbers only. 
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