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Tt has been shown that the problem of finding minimum drag configuration in bypersonic flow can be reduced to
a problem in optimum control and the method of steepest ascent is a useful tool for finding the solution of this
problem.

With the help of the indirect method of the calculus of variations there have been a few studies 1—3
of the problem of determining minimum drag configurations in hypersonic flow regime. Recently with the
advent of computers and evaluation of modern theories of optimization there is an increasing trend towards
direct methods and a number of systematic numerical procedures have been developed. One such approach
which has proved to be a powerful numerical computing tool for the optimization of controlled plant when
the quantity to be optimized is a function of the final values of the dependent variables is the method of
steepest descentt, ‘Though this method has found an extensive application in control theory its appli-
cation in acrodynamics especially to problems of finding optimal shapes has not been seriously considered.
The basic idea behind this method is to obtain equations for adjusting estimates of the decision functions
in order to improve the value of the objective. Inthe present communication it has been brought out
how the method of steepest descent can also be applied for finding minimum drag shapes in hypersonic
flow. For the sake of illustrating the application of the steepest descent algorithm the simple case of
slender body having minimum pressure drag has been considered and it has been established that more
complicated problems can be solved utilising this method.

STEEPEST DESCENT METHQD AND THE AXLGORITHM .
The basic features of the steepest descent method and the step§ reqﬁired‘ to solve a

thy ; problem will
now- be described. = It is required to find the decision function 8 (t) so as to minimise -

¢ = ¢ [x ()] t=12........ » 1 o 1)
where '
% = fi (@, 0, 1) @; (t,) is specified « @)
t=12........ »
P [z ()] = O t=1,2........ - . “1(3)

where ‘to and # being initial and final instants of time and are specified.
The essential steps of the algorithm are as follows 3

‘ I. Initially estimate 8 (t) history, :
II. Using this estimate integrate the system of equation (2) with known initial conditions,
III. Calculate and record ¢(f) and (%), '

IV. Find the influence functions A% corresponding to ¢ and b corresponding to ¢ by backward
integration of the influence functions equations,
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V. Simultaneously with IV determine the following three integrals
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_VI. Calculate the expression for the change in control fuiict;ion from the éxpzjession A

n

S . =l : , i=1 R
where K¢ - and Ky are constants given by | :
R 8¢ = Ky Igp + By Iyg ,
8% = Ky Iyg -+ Ky Ipy s
where 8¢ and 8y are asked for changes in ¢ and s respectively.

VIL _Calgglate the quantity, Ipp — Zgp I Iyp

VIIL Stop if the quantity calculated in step VII tends towards zero, ‘otherwise ‘repeat the

above with }

50 =00) -5

" FORMULATION OF THE PROBLEM

We will now see how the problem of finding the minimum drag shapes can be reduced to the problem
described above and how the steepest descent method can be ‘applied for its solution. Considering the
Newtonian flow theory and assuming that the slender body is at zero angle of a,tit_a_c_};,hdxgavg,)v,o_lumc and

surface area of the body are -given by - ’
. o .
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Introducing the dimensionless variables at ¢ = x/l and X, = y/l and putting (%) = 9 the set of equa-
tions (4) to (6) can be written as

1
D ’ .
e ;fxsesdz
0 .
v 1
= [xa
0
R N
, - )

If we consider ¢ as the independent variable and introduce the following definitions

X, = hglz X, = I;s Xy = 2512 |
we arrive at |
fi=X, =X, 0 R | (7)
f=k=xe
fi=X, =8 - N (9)
fi=¥,=x, | RS

We will consider the following six cases and for minimum drag the quantity to be minimised ¢ '
the end condition ¢ (1) to be satisfied in each case are as follows — 8 4 Y sed 4(1) and

(i) Length and diameter of the body prescribed

, PO=XO Y O=EO—F =0, = L
(ii) Diameter and surface area of the ‘body prescribed ,
X, ) X, (1) - 28

I

¢ ()= Xz(l) ()= Xz(l) —a=0,a I
(iii) Diameter and Volume of the body prescribed i ' '
X, (1
$(1) = X;‘(l’) W= =0, 5=

(iv) Length ‘and surface area of the body prescribed

= . — _ 8 L
$ (1) =X1(1Z,¢(1)=X4(1)—7—0s7— e
(v) Length and volume of the body prescribed o
v
V=X, (1);¢ (1) = (1) p=0,pu B
(vi) Surface area and volume of the body prescribed.
: X @ X2 X2 1) 8n¥?

¢(1)— X (1) ’¢(1)—— X42(1) —y =0, p= 5
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" Thus ixi the laﬁguage of control theory our problem may be stated as follows :

Taking 6 to be the decision variable and X;, X, X3, X; to be state variables, it is required to find the

history of 0, i.e., =0 (¢) so that the value of ¢ (1) is minimum and the system of equations (7) to (10)
together with the end condition ¢ (1) are satisfied in each case. g

SOLUTION OF THE PROBLEM

Now in what follows it is shown how the method of steepest descent can be applied to solve the problem
in the cases mentioned above. . The success of the algorithm described depends upon the proper intitial
choice of the control variable history 8 (t). In previous studies optimal shapes have been obtained via varia-
tional technique and we will here verify that these shapes actually satisfy the steepest descent algorithm
and thus establish the usefulness of this powerful mathematical tool for solving optimal shape problems.

Case (1y—(l,d ) prescribed

In this case the surface area and volume are free and the only prescribed. quantities are length- and

diameter so the equations (8) and (10) can be ignored from the analysis. Thus in this case the system of -
equations are

, . )
f15X1=X303 . &

. X, (0) = X, (0) =0 A
fr=X,=0 J
with |
o (=X, (Dand ¢ (1) =X, (1) — —;—_—_ 0
We know that good estimate of the shape in this case is
' T
X3 = ‘_2— t314
. so that
’ 3r
Therefore the influence functions in this case can be calculated as
27 '
=10 = g (0 — 1)

Allp == O ’ Aa'/’ == 1
Also _
‘ 27 7% \2 SRRy
| I¢¢=(-——i—28_') s Iy =1, Iyg = o5 -
Therefore Igp Iy — Ip¢ = 0 and thus verifyipg that the optimum shape. in this - case is
T v '
Xs = "‘é‘ t3/4.
Case (ii)—(d, §) prescribed
Since in this case volume is free, the equation (8) can be ignored and the system equations are
fl = Xl p——t X303 ] l ‘ . . - ! ;f\f’;ﬁ
fsEXa:o o X,(0) = X5 (0) =X, (0) =0 (12)
fi=sX,=X; j '
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with
1 1 '
()= X2(()) and ¢ (1) = X;((l)) —a=0" -

We take the initial estimate of the shape as X, = —E{: £ 50 that § = —2—1;- : : o

The influence functions in this case can be calculated as -

2 =

1
-A'I’l“-f—'* 0 N N/‘g = - 4 q2 t,‘ A‘/’4= W
Here the values of the integrals corresponding to step (v) of the algorithm aré: -
. B! 16, e

| Lo =g y= g et Iy =—
.- so that ‘ I T T S R R
Igg Ipy — I2gy = O .

and this shows that X; = 5, ¢ 13 the optimizing curve. ' T

Case (iit)—(d, V) prescribed

L g - L Y
In this case since surface area is free, the system equations are

f1—=—X1 = X360 L 4 ' ) | . o
f,=2X, = X2, 0)=X0=X%0=0 L (18)
faEXa =0 |

X, (1
mtth(l)__Xl(()) ¢<1)575%%.—ﬂ=0

1 _ 3
If we take the extremlzmg curve as X _ 4—3- t3/2 then lh tha:t case 0 = ”‘S‘B— t* .
Therefore, the influence functions in this case are E , : N

o 2
My =168 My =0, My = — - + —37#;-( 1—oh )

o
My=0, My, =64 Ny = — 128 + 5 ' ( 1o )

The three integrals corresponding to step (v) are as follows §
7047 o 46484 . 261
Isp = ggrage » = —qr 6 =13 ,B‘

so that
Igg Iy — PPy = 0

, . , ,
Here again we see that the opitmizing curve can be acourately represented by X5 = 5 P2,
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Case (i0)—(S, 1) are prescribed

Here in this case since the volume is free, equatlon (8) can be lgnored from the analysis and the
system equations are

|  A=Xi=X,p
h=X=p X, (0) = X;(0) = X,(0) =0 (14).
fi= X, = X, '
with ¢ (1) = X, () and & (1) = X, (1) —y = 0.
Here we estimate that the optimizing curve is X; = y (n - 1) so that §=yn (n 4 1 yena ~
The influence functions are given by '
Mo=1,0F =87 (n+1)8(1-e2), a8 =0
M=0, M= (1—12) A =1
Therefore, the values of Ipg , Iy and Ipy can be obtained as
I#={2)ﬁn2(n+1)3(4n——3)}2[ 1 n? n ]

(32— 2) 6”_3+,4(4n—3)2+,(4n—3)(3n_._1 )
Iy =} '
293 (n - 1)3 (4n — 3) n 1
o= (3n—2) [4(4n-3) +3a (n—l)] y

so that

| : 2yon? 1) (4n — 3)|? 1 2
Iy Ly — Iyg = { - (?3;;)2)( - )} [{9('27»\—1)4‘12(47;——3)2*

+ 57T (3n—2)}‘{¥(7n33> :+3n <‘;~1> ”

The value of n in this case is 0- 6404 and for this value of n the quantxty I¢¢ I¢./, —I%y =0 conﬁrm-
ing that the power law body x3=1-6404 y£0:640% is a good estimate of the optimum shape.

Case (v)—(l, V') prescribed
In this case the surface area is free so the system is described by the equations

X=X ) |
X, = X7 X (0 =X, (0) =X;(0) =0 (15)
X, =90

with¢ D= X, (D and ¢ (H=X (1) —# =0.

Here again we approximate the optimal shape by X, = V p(2n+1)¢" so that the influence
functions are represented by

B B _/_ nd (20 1) per Sn—2
M =1,08=0, ) = (3n—1) (1—9)
4 . - _ . _— 2“1/2 ( on + ]_)1/2 n41
, M=0, M =1, 3= (nx1) (1—1¢)
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and thus the values of the integrals Iy¢ , Iy¢ and Iy are given by i » .
_4p3n4(2n+1)3(4n—~3)2[ 1 n? n ]

Iyp = (3n—19) 3@ —1) T @3¢ T {@n—3) @n )
7 o Se(m+1)
WE T (n £ 2)
2w n(2n+ 1) (4n—3) 1 S
Igp = (3n—2) [ 2n (30 — )@ —=3) (n+‘2)]
Therefore ' '
: _ [P (20 1) (40 —3)12f 2 1
I¢¢I¢¢“12¢%““[  (3n—12) ][{(2n——‘3)(n+2)’ {3(270—1)+

n? n 1 n 2
A& st @m ) (an t ;J}‘“{Sn(s%l) T3 10 }]

In this case the value of # can be obtained® as n= 0:6594. For this value of n, we can easily verify that
Ipg Ipy — IPgy= O confirming that X3 = /2°3188 #"*™ is a good estimate of the optimum shape.

Case (vi)—(S, V) prescribed

In this case the system of equation are

: f.l = Xl S Xs 93; . | . i’\‘
A=XLi=X8 L x0)= X0 = Ky(0) = X,0) =0 © (16)
fa= X;; =0 ' >
h=X=X; ] :
, . | .
with qS(!) = 2228; and (1) = —)%—zll—;—— v=0. h

Here we take the extremising curve as

X3=12—<1 — (1—~t)3/2}

so that ¢

3 3
- 0 = 4—1-(1——-1}‘)

The corresponding influence functions are then

b1 44 e 52 X, (1) — X
TrRohTY R TmEe 7Y T xag (oA o
v 2X, (1) ¢ [2TX,1)  3X,%1)

ORRNE oA TR

4,50
—:T 50

A

. 5/2 . 2
(1) 3

0
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The three quantities J o I'M' and I¢. can therefore be calculated as

¥
Az 44B
Iy 3+6+9
¢ D® 4CD
Iy=3+%—9
AC 2 BD )
Ly =5 +5 (B0 —4D) — =~
where
315 9 - 175 10
4 =g B=—3 7. 0=5,D= 3
so that we find that
P .
Ty Ly — Iw Tz (4D +BC) =0

which confirms that the optimising curve in this case is

X, _:21-{1__ (1 —¢) }or X3=1—fg- {1-—"(1—-—(‘t)3/2}

CONCLUSION

The above demonstrates the vahdlty of the steepest descent method for solvmg minimum drag
problems. It is established that.this method is a useful tool for aerodynamic problems and can be utilised
for finding optimum shapes for more complicated situations where analytical solutions are not known .
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