SOURCE FLOW BETWEEN TWO POROUS DISKS

R. B. Srivastaya
Lucknow University, Lucknow
(Received 27 November 1971)

> The flow of a viscous, incompressible fluid between two parallel porous disks when the lower disk is rotating and the upper disk is at rest has been studied. The solution obtained is valid for small values of wall Reynolds number.

Recently Elkouh ${ }^{1}$ studied the laminar source flow between parallel porous disks for small wall Reynolds. number. The solution obtained therein is in the form of a perturbation from the creeping flow solution. In this paper an effort has been made to extend the problem studied by Elkouh ${ }^{1}$ to the case when the lower disk is rotating and the upper disk is at rest.

Similar source flow problems have also been studied previously². \cdots
FUNDAMENTALEQUATIONSAND'BOUNDARY-OONBITIONS
Let us take the axis of rotation of the disk as \bar{z}-axis and let the two disks be situated at $\bar{z}= \pm a$. Consider the flow of an incompressible fluid between a rotating and a fixed porous disk with a source at the centre.

The governing non-dimensional hydro-dynamic equations of motion in cylindrical polar coordinates are

$$
\begin{gather*}
u \frac{\partial u}{\partial r}+w \cdot \frac{\partial u}{\partial z}-\frac{v^{2}}{r}=-\frac{\partial p}{\partial r}+\frac{\partial}{\partial r}\left(\frac{\partial u}{\partial r}+\frac{u}{r}\right)+\frac{\partial^{2} u}{\partial z^{2}}, \tag{1}\\
u \frac{\partial v}{\partial r}+w \frac{\partial v}{\partial z}+\frac{u v}{r}=\frac{-\partial}{\partial r}\left(\frac{\partial v}{3 r}+\frac{\partial}{r}\right)+\frac{\partial^{2} v}{\partial z^{2}}, \tag{2}\\
u \frac{\partial w}{\partial r}+w \frac{\partial w}{\partial z}=-\frac{\partial p}{\partial z}+\frac{\partial^{2} w}{\partial r^{2}}+\frac{1}{r} \frac{\partial w}{\partial r}+\frac{\partial^{2} w}{\partial z^{2}} \tag{3}
\end{gather*}
$$

and the equation of continuity is

$$
\begin{equation*}
\frac{\partial}{\partial r}(r u)+\frac{3}{3 z}(r w)=0 \tag{4}
\end{equation*}
$$

where the non-dimensional quantities are defined as

$$
r=\frac{r}{a}, z=\frac{\bar{z}}{a}, u=\frac{\bar{u} a}{\nu}, v=\frac{\bar{v} a}{\nu}, w=\frac{\bar{v} a}{\nu} \text { and } p=\frac{\bar{p} a^{2}}{\rho \nu^{2}}
$$

Let the lower disk be rotating with angular velocity ω and the strength of the source be Q. The boundary conditions are
and

$$
\left.\begin{array}{ll}
u=0 & \text { at } z= \pm 1 \tag{5}\\
v=R w \alpha r & \text { at } z=-1 \\
v=0 & \text { at } z=1 \\
w=\mp R w & \text { at } z= \pm 1
\end{array}\right\}
$$

where
$\alpha=$ Rotational Taylor number $=\frac{\omega a}{\nu}$
$R e=$ Reynolds number $=\frac{Q}{4 \pi \nu a}, R w=$ Wall Reynolds number $=\frac{V a}{\nu}$ and V is the magnitude of the constant injection velocity at the two disks.

SOLUTION OFTHEPROBLEM

Let us define a stream function ψ as

$$
\begin{equation*}
u=\frac{1}{r} \frac{\partial \psi}{\partial z}, w=-\frac{1}{r} \frac{\partial \psi}{\partial r} \tag{6}
\end{equation*}
$$

For small values of $R e / r^{2}$, following Elkouh1, let

$$
\begin{align*}
& \psi=\frac{1}{2} r^{2} R w f_{-1}(z)+R e\left[f_{0}(z)+\left(\frac{R e}{r^{2}}\right) f_{1}(z)+\left(\frac{R e}{r^{2}}\right)^{2} f_{2}(z)+\ldots\right], \tag{7}\\
& u=\frac{1}{2} r R w f_{-1}^{\prime}(z)+\left(\frac{R e}{r}\right)\left[f_{0}^{\prime}(z)+\left(\frac{R e}{r^{2}}\right) f_{1}^{\prime}(z)+\left(\frac{R e}{r^{2}}\right)^{2} f_{2}^{\prime}(z)+\ldots\right] \tag{8}\\
& v=r R w g_{-1}(z)+\frac{R e}{r}\left[g_{1}(z)+\left(\frac{R e}{r^{2}}\right) g_{3}(z)+\left(\frac{R e}{r^{2}}\right)^{2} g_{5}(z)+\ldots\right], \tag{9}\\
& \left.w=-R w f_{-1}(z)+\left[2\left(\frac{R e}{r^{2}}\right)^{2} f_{1}(z)+4\left(\frac{R e}{r^{2}}\right)^{3} f_{2}(z)+\ldots\right], \cdots\right], \tag{10}
\end{align*}
$$

where prime denote differentiation with respect to z.
Substituting the values of u, v, w and p from (8) to (11) in (1) to (3) and equating terms of like powers of r on both sides, we get an infinite system of simultaneous ordinary differential equations. The first four systems are

System I

$$
\begin{aligned}
& f_{-1}^{\prime}+R w\left(f_{-1} f_{-1}^{\prime \prime}-\frac{1}{2} f^{\prime 2}-1+2 g_{-1}^{2}\right)=h_{-1} \\
& g_{-1}^{\prime \prime}+R w\left(f_{-1} g_{-1}^{\prime}-f_{-1}^{\prime} g_{-1}\right)=0 \\
& h_{-1}^{\prime}=0
\end{aligned}
$$

System II

$$
f_{0}^{\prime \prime}+R w\left(f_{-1} f_{0}^{\prime}-2 g_{-1} g_{1}\right)=h_{0}
$$

$$
\begin{aligned}
& g_{-1}^{\prime \prime}-R w\left(2 f_{0}^{\prime} g_{-1}-f_{-1} g_{1}^{\prime}\right)=0, \\
& h_{0}^{\prime}=0
\end{aligned}
$$

System III

$$
\begin{aligned}
& f_{1}+R w\left(f_{-1}^{\prime} f_{1}^{\prime}+f_{-1} f_{1}^{\prime \prime}-f_{1} f_{-1}^{\prime \prime}+2 g_{-1} g_{3}\right)=-g_{-1}^{2}-2 h_{1}-f_{0}^{\prime 2} \\
& g_{3}^{\prime \prime}+2 R w\left(f_{-1}^{\prime} g_{3}+f_{-1} g_{3}^{\prime}-f_{1}^{\prime} g_{-1}-f_{1} g_{-1}^{\prime}\right)=0 \\
& h_{1}^{\prime}=0
\end{aligned}
$$

System IV

$$
\begin{aligned}
f_{2}^{\prime \prime \prime}+ & R w\left(2 f_{-1}^{\prime} f_{2}^{\prime}-2 f_{2} f_{-1}^{\prime \prime}+f_{-1} f_{2}^{\prime \prime}\right)=2 f_{1} f_{0}^{\prime \prime}-4 f_{1}^{\prime} f_{0}^{\prime}-2 g_{1} g_{2}-2 g_{1} g_{5}- \\
& -\frac{8}{R e} f_{1}^{\prime}-4 h_{2}, \\
g_{5}^{\prime \prime}- & R w\left(-2 f_{-1}^{\prime} g_{5}-3 f_{0}^{\prime} g_{3}+2 f_{2}^{\prime} g_{-1}-f_{-1} g_{5}^{\prime}+2 f_{1} g_{1}^{\prime}+4 f_{2} g_{-1}^{\prime}+f_{0}^{\prime} g_{3}\right)+ \\
& +\frac{8}{R e} g_{3}=0 \\
h_{7}^{\prime}= & \frac{2}{R e} f_{1}^{\prime \prime}+2\left(\frac{R w}{R e}\right)\left(f_{-1} f_{1}^{\prime}+3 f_{-1}^{\prime} f_{1}\right) .
\end{aligned}
$$

For small values of $R w$, let us expand the function f_{n}, g_{n} and h_{n} in ascending powers of $R w$ as follows:

$$
\begin{equation*}
f_{n}=\sum_{i=0}^{\infty} R w^{i} f_{n, i} ; g_{n}=\sum_{i=0}^{\infty} R w^{i} g_{n, i} ; \text { and } h_{n}=\sum_{i=0}^{\infty} R w^{i} h_{n, i} \tag{12}
\end{equation*}
$$

Substituting the expressions (12) into the system of differential equations I to IV, we get on equating the coefficients of like powers of $R w$, another infinite sets of equations. On solving those differential equations under the boundary conditions (5), we get

$$
\begin{align*}
f_{-1}^{\prime}= & \frac{3}{2}-\frac{3}{2} z^{2}+R v\left[\frac{19}{560}-\frac{117 z^{2}}{560}+\frac{105}{560} z^{4}-\frac{7 z^{6}}{560}+\alpha^{2}\left(-\frac{5 z^{4}}{120}+\frac{4 z^{3}}{24}+\right.\right. \\
& \left.\left.+\frac{3 z^{2}}{60}-\frac{z}{6}-\frac{1}{120}\right)\right]+R w^{2}\left[-\frac{3288}{2587200}-\frac{6645}{2587200} z^{2}+\frac{78540}{2587200} z^{4}-\right. \\
& -\frac{81774}{2587200} z^{6}+\frac{13860}{2587200} z^{8}-\frac{693}{2587200} z^{10}+\alpha^{2}\left(\frac{9}{120960} z^{8}-\frac{8}{6720} z^{7}+\right. \\
& +\frac{63}{5600} z^{6}+\frac{6}{720} z^{5}-\frac{355}{4800} z^{4}-\frac{44}{320} z^{3}+\frac{5088105561}{4563820800} z^{2}+\frac{73}{560} z- \\
& \left.\left.-\frac{1767518445}{4563820800}\right)\right] \tag{13}
\end{align*}
$$

$$
g_{1}=R w\left[-\frac{\alpha z^{3}}{4}+\frac{3 \alpha}{4} z^{2}+\frac{3 \alpha}{40} z^{5}-\frac{\alpha}{8} z^{4}+\frac{7 \alpha}{40} z-\frac{5 \alpha}{8}\right]+R w^{2}\left[\frac{91 \alpha}{403200} z^{9}-\right.
$$

$$
-\frac{63 \alpha}{31360} z^{8}-\frac{693 \alpha}{23520} z^{7}+\frac{315 \alpha}{16800} z^{6}+\frac{937 \alpha}{11200} z^{5}-\frac{321 \alpha}{6720} z^{4}-\frac{223 \alpha}{3160} z^{3}-
$$

$$
\begin{equation*}
\left.-\frac{559 \alpha}{1120} \overline{z^{2}}+\frac{20227543 \alpha}{111484800} z+\frac{249375}{470400} \alpha\right] \tag{18}
\end{equation*}
$$

$g_{3}=R w\left[-\frac{19 \alpha}{2240}+\frac{16 \alpha}{4200} z+\frac{15 \alpha}{560} z^{2}-\frac{5 \alpha}{280} z^{3}-\frac{33 \alpha}{1120} z^{4}+\frac{33 \alpha}{1400} z^{5}+\frac{7 \alpha}{560} z^{6}-\right.$

$$
\begin{equation*}
\left.-\frac{3 \alpha}{280} z^{7}-\frac{3 \alpha}{2240} z^{8}+\frac{\alpha}{840} z^{9}\right]+O\left(R w^{2}\right) \tag{19}
\end{equation*}
$$

$\dot{g}_{5}=0+0(R w)$,
For $\alpha=0$, the above results reduce to those obtained by Elkouh ${ }^{1}$.

$$
\begin{align*}
& f_{0}^{\prime}=\frac{3}{2}-\frac{3}{2} z^{2}+R w\left[\frac{17}{280}-\frac{108}{280} z^{2}+\frac{105}{280}-\frac{14}{280} z^{6}\right]+R w^{2}\left[\frac{5563}{5174400}-\right. \\
& -\frac{170112}{5174400} z^{2}+\frac{542850}{5174400} z^{4}-\frac{490644}{5174400} z^{6}+\frac{121275}{5174400} z^{8}-\frac{8932}{5174400} z^{10}+ \\
& +\alpha^{2}\left(\frac{99 z^{8}}{60480}+\frac{2056}{403200} z^{7}+\frac{483}{50400} z^{6}-\frac{6}{96} z^{5}+\frac{55}{1200} z^{4}+\frac{44}{480} z^{3}-\right. \\
& \left.\left.-\frac{13285}{1209600} z^{2}-\frac{3454}{100800} z+\frac{1043}{403200}\right)\right] \text {. } \\
& {f_{1}^{\prime}}_{1}=\frac{15}{280}-\frac{99}{280} z^{2}+\frac{105}{280} z^{4}-\frac{21}{280} z^{6}+R w\left(\frac{2003}{184800}-\frac{20703}{184800} z^{2}+\right. \\
& \left.+\frac{43850}{184800} z^{4}-\frac{34650}{184800} z^{6}+\frac{10395}{184800} z^{8}-\frac{935}{184800} z^{10}\right)+O\left(R w^{2}\right), \\
& f_{2}^{\prime}=\frac{1}{431200}\left(5301-44340 z^{2}+76230 z^{4}-52668 z^{6}+17325 z^{s}-1848 z^{10}\right)+ \\
& +\frac{1}{2100 R e}\left(93-708 z^{2}+990 z^{4}-420 z^{6}+45 z^{8}\right), \tag{16}\\
& g_{-1}=\frac{\alpha}{2}(1-z)+R w\left[\frac{\alpha z^{5}}{40}-\frac{\alpha z^{4}}{16}+\frac{3 \alpha}{8} z^{2}-\frac{\alpha z}{40}-\frac{5 \alpha}{16}\right]+R w^{2}\left[\frac{34 \alpha}{80640} z^{9}-\right. \\
& -\frac{6 \alpha}{8960} z^{8}+z^{7}\left\{\frac{4 \alpha^{3}}{10080}-\frac{252 \alpha}{47040}\right\}+z^{6}\left\{-\frac{\bar{\alpha}^{3}}{1260}+\frac{210 \alpha}{33600}\right\}+ \\
& +z^{5}\left\{\frac{106 \alpha}{22400}+\frac{11 \alpha^{3}}{2400}\right\}+z^{4}\left\{\frac{8 \alpha^{3}}{1440}-\frac{222 \alpha}{13440}\right\}+z^{3}\left\{-\frac{\alpha^{3}}{80}\right\}+ \\
& +z^{2}\left\{-\frac{11 \alpha^{3}}{480}-\frac{506 \alpha}{2240}\right\}+z\left\{\frac{41 \alpha}{201600}+\frac{379 \alpha^{3}}{50400}\right\}+\frac{1061 \alpha}{4480}+ \\
& \left.+\frac{29 a^{3}}{1440}\right], \square=-
\end{align*}
$$

Fig. 1-Variation of $10^{3} f^{\prime}{ }_{-1}(z)$ with z for $R w=0.5$.

Fig. 2-Variation of $10^{2} f_{0}^{\prime}(z)$ with z for $R w=0.5$.

DISCUSSION

Curves have been drawn (Fig. 1 and 2) showing the variation of $f^{\prime}-1(z)$ and $f_{0}^{\prime}(z)$ with z for $\alpha=0$ and $\alpha=1$ when $R w=0 \cdot 5$ and $R e=10$. We see from Fig. 1 that the effect of rotation is to increase its $f^{\prime}{ }_{1}(z)$ value near the two disks and to damp it in the region $z=(-0 \cdot 5,0 \cdot 6)$. Again from Fig. 2 it can be easily seen that the effect of rotation on $f_{0}^{\prime}(z)$ is to increase it for all values of z. Since $R e / r^{2}$ is small, we may conclude that the effect of rotation on the radial velocity is to increase it near the two disks and to impede it in the region midway between the two disks.

Similarly, from Table 1 we infer that the effect of rotation is to increase the transverse velocity.

Tablit 1

$R w=0.5$

2	$g_{-1}(2)$		$\theta_{1}(2)$		$g_{3}(z)$	
	$\alpha=0$	$a=1$	$a=0$	$a=1$	$a=0$	$a=1$
1.0	0	0	0	0	0	0
0.8	0	0.0697	0	-0.0317	0	-0.0003
0.6	0	0.1434	0	-0.0728	0	-0.0010
0.4	0	$0 \cdot 2229$.	0	-0.1139	0	-0.0021
0.2	0	0.3128	0	-0.1531	0	-0.0034
0	0	$0 \cdot 4080$	0	-0.1687	0	-0.0042
-0.2	0	0.5151	0	-0.1872	0	-0.0040
-0.4	0	$0 \cdot 6314$	0	-0.1697	0	-0.0027
-0.6	0	$0 \cdot 7540$	0	-0.1262	0	-0.0010
-0.8	0	0.8806	0	-0.0667	0	-0.0006
-1.0	0	1.0000	0	0	0	0

ACKNOWLEDGEMENT
The author is highly obliged to Prof. Ram Ballabh for his kind help and valuable guidance in the preparation of this paper and to the C.S.I.R. for the award of a Fellowship.

REFERENCES

1. Elkour, A.F., Laminar souree flow between parallel porous disks, Appl. Sci. Res., 21 (1969), 284,
2. Pedbe, J. L. \& Kreithe, F., Ecoulement permanent d' un fluide visqueux incompressible entre deux disques paraliles en rotation, J. de Mecanique, 5 (1966), 261.
3. Kreithe, F. \& Viviand, H., Laminar source flow between two parallel coaxial disks rotating at different speeds, J. Appl. Mech., 34, No. 3; Trans. A.S.M.E., Series E, Sept. (1967), 541.
4. KHaN, M.A.A., Laminar source flow between two rotating disks in presence of a transverse magnetic field, J. de Mecaniques 9 (1970), 99.
5. Kreitir, F. \& Petbe, J.L., Eooulement entre deux disques parallels en rotation, C.R.Acad. Sc. $t, 260$ (1965), 5184.
