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The problem of determining the geometry ofslender, a xisymmetric missiles of minimum ballistic factor in iypersopic..
fow hagbeen solved via the calculus of variations underthe assumptionsthatthe flowis Newtonian and- the surfaee- ~, "~ = -
averaged skinsfriction cosfficient is constant. The study has been made for cenditions of given length and -digmeer, L T
givendiameter and surfacearea,andgivensurfaceareaandlength. Theearlierinvestigations® where only regular shapes
were determined has been extended to cover those class of bodies which consist of regular shapes followed or preceded
by zero slope shapes. . IS

The problem of finding the missile shapes of minimum ballistic factor in hypersonic flow was previously
“treated by a mumber of authors, viz., Berman'; Fink? Miele & Huang®, Heidmann® and Tawakley &
Jain®6¢7. In a recent paper Jain & Tawakley® gave a variational solution for'extreniisingthe sum of the
products of the powers of several integrals and applied, the same for finding missile geometries of minimum
ballistic factor for the three cases when any two of the three geometric quantities of the missie viz., length [,
diameter d and wetted area S are known in advance.Those class of shapes which are continuous and having
positive slope everywhere were discussed and it was found that the solutions were .valid upto certain
critical values of the friction parameters k, (= 4c;B/d®), when [, d are’known, ks (= 4cr $%/73 df),
when 8, d are known and k(= 4cs 73 1/5%), when 8, I-aré known. In this-paper the- results have been
extended to cover these cases where k., ks and k; exceed these upper limits. This involves considering those
class of bodies which may have diseontinuity in slope. In the I, ¢ given case an analytical solution has been
obtained instead of the numerical solution as proposed by Miele & Huang?. - ;

MULATION OF THE PROBLEM AND THE NECESSARY CONDITIONS
FORMULAT FOR EXTREMAL SOLUTION BE CORDL

Under the assumptions that the flow is along the axis of the missile, pressure distribution obeys New-
tonian law and the surface averaged skin-friction coefficient is constant, it was shown®that for finding the
minimum ballistic factor, shape, the following three functional expressions have t6 be minimised.
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X(=zland Y ( = —% y) being dimensionless coordinates of the missile.

Now since we are considering the possibility of the missilé having a zero-slope shape, i.e. ¥’ > 0, this
-inequality may be written as R .
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where Z (X) denotes a real variable.

According to the theory® the necessary condition for extremising functional expressions 1 to 3 is
identical with extremsmg a new functnonal of the form

—jF(X Y Y, Z, p.,,v)dX =123
where F denotes the fundamental functuon
F = [41 Y Y +}L2Y + II'3 Yz——'v(Y'—--ZZ)

Here v =» (X) is 8 vanable La.grange ‘multiplier and p,, pg, s are consta:nt mulhpher d.eternmned8 |
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MM
‘M' %+hh - R _
. o By Ay Ay - E‘ (I, d) given ‘ ' s (6)
SRR VS PN o e
:#sf'_"‘—}\a J
M ]
.pl _’. 1-+kﬂ)‘1}‘22/ . o
= Detha¥, o Sdgven o
. V4%, 0 0% o .
pg = — A J -
MM o 1
‘m—,Mz"!'ka’\i } | |
S 22 (g — M) L (S,7) given R ®)
=T S L
By = —2A
where ‘ _ ,
y=1L =123 ©)

From the calculus of variations it is known that the extremal solutlon must satisfy the Euler equa-
tions

6u1YY'Y”+2ply3—p2——2y3Y——v=0, vZ =0 (10)
The second Euler equatlon admits the solution

v==0orZ =0

the first of which is called a regular shape and the second of which is ca.lled a Zero slope shape. The extremal
aro may be composed of one or both of these. Since the fundamental function F does not contain the inde-
pendent variable X explicitly, the first Buler equation admits the first integral as

2p, YY" — ¥ — py V2o (11)
" where ¢ is a constant. ‘
If the extremal arc is composed of more than one sub-aro then the corner conditions
Ap YT = AB w YT —1) =0

must be satisfied. Here A{........) denotes the difference between the quantities evaluated immediately
after and before the corner point. '

12



TAwARLRY & JaIN : Minimum Ballistio Faotor in Missiles
The first expression implies that the value of ¢ does not change across the corner point, Also the two

expregsions admit the pair of solutions
Y_O’ "=0: AYl#O

and : K :

Y#0, v=0, AY =0
These solutions imply that, (4) a discontinuity in slope can occur only on the axis of s'ymmetry and (v) re-
gardless of whether there is a discontinuity in slope, the relation v=0 holds on hoth sides of the corner point.

For the extremal are to be mlmmal the Weierstrass condition
' B, Y (Y¥ £ 27)(Y¥ — V) -]—v(Y*' Y)>o0

must be satisfied. Here unstarred symbols stand for the ext;rema,l arc and starred symbols for. a compa.nson
arc. For the regular shape, since p, is positive for all the three cases [see equs. (6), (7) & (8)], the posrtlve-
ness of E is ensured as long as Y’ and Y*'. satisfy the constraint (). For the zer0 sloPe shape, the posi-
tiveness of K is ensured provided » > 0 everywhere. Thus, we have -

Y’ > 0 for regular shape

v 2> 0 for zero-slope shape

v =0 at the corner point

: TOTALITY OF SOLUTIONS
Considering the Z€er0 slope shape Y'=0, i.e., ¥ = const., the Euler equatlons (10) gives
Vo=— (I"z + 2u Y) :

which may be in’c'egi'ated as
V—-—-(nz+2MaY) (X — Xq) : (12)
where Suﬁ"rx 0 represents the corner point.

From (12) we observe that the ’oransmon from regular sha.pe to zero slope shape and vice versa will
occur when

et p Yot pg Y2 = (13)

Also(12)indicates that along the zero slope v varieslinearly with absoissa and so it can vanish at only one point

of each zero slope shape and this is the corner point. This implies that the regular shape can be preceded or

followed by no more than one zero slope shape and the equamon of the zero slope.shape can only be
= 0 (a spike) and/or ¥ = 1 (cylinder).

If Y =0 be the ze10 sloPe shape then from (12) & (13), we must have py >0 and c=10,
If Y =1 be the zero slope shape then agam from (12) & (18), we must have (u, -{— 2#3) <0 and
¢+ ppt p3=0.

Since no more than two corner points and three sub-arcs cad exist, the totality of extremal 8ICS COD~
sists of the following four classes of bodies. o

Class I — Bodies composed of regu]ar shape only (v =0). .
Class II — Bodies composed of a spike followed by a regula,r shape (Y =0+ p = 0)
Class IIT — Bodies composed of a regular shape followed by a oylinder (v = 0 ¥ 1).

Class IV — Bodies composed of a-spike followed by a regular sha,pe followed by a cylmder
Y=0>v=0->Y=1)
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 1[He ritost” gemeval forsn Of the extremal are s of olass 7V and with the help of (11) can b represented by the
equations N LT e e e e e
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where X, and X, represent the abscissae of the two_possible transition (corner) points. Bedies of class I
can be obtained from bodies: of class IV by putting. X,y =70, X,=1." Bimilarly bodies of class 11
and olass III can b obtained by putting X, =1 and X, =0 _respectively. Thus from the above.
‘descussion wegee that . T T T o .
: R0, Xg=1 forclasFhodies T - T

6=0, Xp—1' fofclass IFbodies =~~~
X,=0, o+ p+ =0 forclass I bodies™ " " - °

6=0, py+py=0 forolassIVbodies

SOLUTION OF THE PROBLEM
From (4), (9) & (11), it oan b deduced that. === T L /
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Combining (15), (17) & (18), we arrive at . AT e
oXpor (i =X+ 5 55 +52 =7 @bl utpt +
rrrr - : - S 3‘ e e e N . r~ ,’
" ¢ Jéin'& Tawakley® obtained bodies of class I only i.c., those bodies which consist of regulat shape only.
Tt was shown that such bodies can be obtained upto certain values of %, & and %, for (I, d) given,
(8, dygiven and (S, ) given casesrespctively: Now we discuss thdse class of bedies which are minimal for -
values. of k, , k, and ky exceeding those limiting. ‘values. L

~ . L=

Case 1 = Leng{thtand_' diameter are gvens - ST
Jain & Tawakley® caloulated that inthisease - -~ .. . . -
| | n,

= R
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- andsoc i always positive and oan never be zero. Therefore the existence of bodies of clags IT and class IV
* are ruled out and the extremal bodies consist of clqss 1 and/or clags I11, i.e., the Zero 510pe shape is Y=1
(X =0) and so from (13), we have : ‘

: . c+m+m——0 T I - |
Therefore (15), (17) & (18) reduce to o . S
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In the above, wemake the substmutxon Z=(1 —Y), we get Lt o i R
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These can be integrated in the form - | .
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: In the above B and F represent Beta and Hypergeometno functions respectively. From (20), (24) &
(28), we find that .

Ha 1—2

& =‘ y—1 (32)
- But (6) & (19) give ' :
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Com“biiung (32) & (33), we get

sy—1) RO
R & ”kiﬂ"‘ ?) . (’34.) '
Again (6) & () give L - '
' S : 2 22y —1) -
Thus (29), (30) & (31) oan be writbenas PSR TEN S
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Further makmg use of (6), (20), (84), (36) & (37), we Obtain

{54(2'7:1:_1?} [yp(2 la)p(iaf;y“;(zy—"i>ﬁ<§ ) f(%,é;?’,r) ] |
PRt "‘—(1_7)[1-—3(1—-2:20)] =T o (38)

Elumnatmg Xy from (35) & (38) and making use of the well- known propemes of the Hypergeometnc funec-
tions (see Appendix), we finally obtain - ° S e ,
906 4, (1—) = 27(27—-1)[2 1= 8 ( ) P b0+
L +‘<2¢—1>B(— )F@,ww] : B
known “values of k, (>1-6293, see Appendlx) Knowmg y we can

'This equatlon gives the values of y for
obtain the transition point from (35). The relatlon between X20 and Icl is presented in Flg

1-0 1
R F
— o.a— —
[=)
o~
.
0.7
'0‘5 T : .l‘ - T =
! I 8 e 12

: L . .
Fig. 1—Abscissa of the corner point, when (,d,) are given
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Knowing X,, the shape of the minimising curve of class I71 is known by using (14)as, =

Y —3 . 1‘

jm (1—7)—+ (1 4+ Y ,Y)dY
X o 1—"7 y )
E= 1 _ = 0<X <KX, 3 : : ‘ (40).

JY* (»1—1\’)—& (’*1"-1‘- 3 17 _Y)df

Y1 - C X,<X<1 ]

This relation has been shown in Fig. 9. Further the values of A, A, and X; can be calculated from'(34)
o S S - - o

(86) & (37) respectively and then the value of the factor (' = is obtained from (1) and is represented

in Fig. 8. ' Sl : : :

0y S ; 16 1
081
06 ky =212 1 -
ky = 8 P
> : O
. k‘ < L . . F}: N
04 - : o
6 -
021" ,
. e ,- 3 S ——
] 02 04 0-6 0-8 1 S ! 3 6 . 9 12
. X ' « Ky
Fig. 2—Optimum shapes, when (I,d,) are given. Fig. 3}114;rigimum value of the factor ¢ ',lzis , when (L.d.) are E

Case 2 : Surface area and diameter are presoribed

Since the drag of a spike is zero regardless of its length and it does not also add to the volume, we can
take any extremal arc of class I and generate from it an infinite number of equal ballistic factor solutions of
class II by adding a spike of arbitrary length in front. Similarly, we can take any extremal arc of class 1T
and generate from it an infinite number of equal ballistic factor solutions of class IV by adding a spike of
arbitrary length in front. For these reasons, in case the length is free, only solutions of class I and/or class
JII are considered. These solutions ocour when the friction parameter kg is smaller or larger than a critical
value respectively. Jain & Tawakley® found that bodies of class I exist for k, < (°9113. Here we
disouss bodies of class 11I. It was. proved that when surface area and diameter are known, ¢ = 0. Since
Y =a1is the zero slope shape, we have from (13).

| - =0 | @y
The shape of the minimiging curve from (14) is easily represented as : :
X ' )
—=1-(l--Y) 0 XXy |
X0 ( ) SO (42)
X=1 ¥ K<
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‘Therefore (16, (17) & (18 give =T T

Bub (15) gives

B e AN Lo e me
O 2_5;20";—_7:5 ‘ '1\:1) R TR 2‘46) :
Making use of (7), (43), (44) & (45), it can be de-

duced that . :

, (9 N2 160 -1
. ‘Xzo[ 9 (1—-~5— m) +—27K2X202] =

40 (1,,—5;%.‘—"99) e I L

This gives the sransition point for known values 6f
k,(>0.9113) and is plotted in Fig. 4. BnowingX ,
- we have the geometryof the minimal curve from (42) - T
and is illustrated in Fig. 5.  Also, Xy, A, and Ay are 06 SRR RIS SN DU S O
known from (43), (44) and (4b) respectively and . . 2 3 &4 5 6 7 8 9 10
thus the values of C S8/x® @ are @ieuhted'M“ S Tk ~ L
(2) and are represented in Fig. 6. ' e Fig, 4—Absoissa of the sorner point, “when (S,d).are.

' Y 0 L given S o

S

1wy

e

06 |

O R L2 o

02 -

0 - T t —F Laar) ml . ."5, ! v —— N Bl ! b T !

0 02 04 06 08 10 T2 3 ¢ 5 6 -7 8 9 10

Fig. 5—Optimum shapes, when i(S,d).are given. . Fig. 6—Minimum value of the factor ¢ 5%, when(8,d)
- ’ . are given. o d°
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Gﬁi&&rﬁf&ﬁgface area and lengtk are known : - . : =
Juity & Pawoldley® deducedt that * »
w%&%’ﬁ_“' (48) -
In this case there is a pOSSlblllty of e beoonﬁﬁg zero Jain & Tawakleys‘ showed that for ¢ > 0 bodies of _
olass I exist and hold for k&, < 19-5318. “For ¢ = 0 the solution consists of bodles of olass IT (X0 =

Therefore;for zeroslope shape Y =0.. From (8) and (19), wesee that p, + p; =0 andso the shape of the
optimizing curve of class IT is - )

Y=0 , 0<X < Xioj
i (49)
X = r—rr-—Xm> 1Y}  X,<X<
Usmg (49) in (16), (17) &(18) gives a :
: 1_ 8 . sl ,
AT i —Xe? . - ..
1 3(1—X, ERTEE . - .
)T=_~—5—L°) - S S (1)
1 9(1—-X,) o
2 == o -
7 Also from (15), we have (i Xm) 8 -—( p ) (83)
Ma.kmg use of (8), (50), (51) & (52), lead to
( 6?5 i ‘

Thls gives the transition pomt as a functlon of k (>19- 5313) d is represented in Flg 7 Knomng X 100
- weknow from (49), the geomefry of the minimisitig arv andis glven in F1g 8 Algox;, A, and Agare cdlculated

from (589, (5) &(52)@1&800"; mknownfmm(?»)an&rs

mF1g9=

- ', -
015 °3
012 0-8 7
: .6
9-09 A > 0-8
)
x - - B .
04
0-06
b ,
003 - 027
: ) .
0 4 . , rer— v 0
20 - 30 . .40 S0 o
~ oo ‘ ,
Pig. 7—-A.b3mss:1. of the corner point, when (S 1) are glven. Fig. §-.~Optimum shapes; when (8, 7) are given.
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45 S | : - ' APPENDIX

The analysis givén for the first case when length

- and diameter are known in advance can be utilised

_to find analytically the critical value of & upto which

~ only regular shapes of class I are possible. For this
putting X5 =1 in (36) & (38) give

1 ={3‘—2—%1‘l}*'3 (3 ;)F@ 3.2) 65

3y B (—g—,%q)ﬁ‘(%, %, 4,,, *3(27—1) B

15
' - o (20T
20 30 40 S0 =
| N ( 53 )F(% §,5,7) =(1— 7){2(2 1,} 60
Flg 9—~Minimum value of the factor ¢ _7° F° , when (8, l) are
: g2 g;ven

Eliminating %, from these two expressions gives
2 10 , 2 "'
5y 8 (2. 2) Pathn—s -8 (3 1) Fas 8=

=0— 8(5 3) PG -
Making use of the following well known i)mperty of the Hypergeometric functions
H7~x~@7—1—m—mw}Fwﬂmm%+w~%ﬂy —B)& & (%87 +1,2)—
——7(7’*‘1)(1-—”)1’1(“’}9,7'—1 ) = '
the a.bOVe may be simplified ¢ as X ' '
" (1—»F (%342 7)—(27—-1)1"(%,%, 3,7)=0

Solving this equation for y the critical value of %, upto which regular shapes of class I are possible can
be obta.med by using (55) as 1-6293. ‘
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