MTNIMUM BALLISTIC FACTOR PROBLEM OF SLENDER AXIAL SYMMETRIC MISSILES

V.B. Tawakley \& S.C. Jain
Defence Science Laboratory, Delhi

(Received 23 December, 1977)

Abstract

The problem of determining the geometry ofslender, axisymmetric missiles of minimum ballistic factor in hypersonic flow hasboen solved via the calculus of variations underthe assumptions that the flowis Newtonian and the surfacoaveraged skinofriction coefficient is constant. The study has been made for cenditions of given tength and diamiter, givendiameter and surfacearea, andgivensurface area andlength. Theearlierinvestigation 8^{8} where only regular shapes were determined has been extended to oover those class of bodies which consist of regular shapes followed or preceded by zero slope shapes.

The problem of finding the missile shapes of minimum ballistic factor in hypersonic flow was previously treated by a number of authors, viz., Berman ${ }^{1-7}$ Fink ${ }^{2}$, Miele \& Hunng ${ }^{3}$, Heidmann ${ }^{4}$ and Tawakley \& Jain ${ }^{5,0 \& 7}$. In a recent paper Jain \& Tawakley ${ }^{8}$ gave a variational solution for extremising the sum of the products of the powers of several integrals and applied the same for finding missile geometries of minimum ballistic factor for the three cases when any two of the three geometric quantities of the missile viz., length l, diameter d and wetted area S are known in advance.Those class of shapes which are continuous and having positive slope everywhere were discussed and it was found that the solutions were valid upto certain critical values of the friction parameters $k_{1}\left(\equiv 4 c_{f} l^{3} / d^{3}\right)$, when l, dare known, $k_{2}\left(\equiv 4 c_{f} S^{3} / \pi^{3} d^{6}\right)$, when S, d are known and $k_{3}\left(\equiv 4 c_{f} \pi^{3} l^{6} / S^{3}\right)$, when S, l are known. In this paper the results have been extended to cover these cases where k_{s}, k_{2} and k_{3} exceed these upper limits. This involves considering those class of bodies which may have disoontinuity in slope. In the l, d given case an analytical solution has been obtained instead of the numerical solution as proposed by Miele \& Huang ${ }^{3}$.

FORMULATION OFTHE PROBLEM ANDTHENECESSARY CONDITIONS

Under the assumptions that the flow is along the axis of the missile, pressure distribution obeys Newtonian law and the surface averaged skin-friction coefficient is constant, it was shown that for finding the minimum ballistic factor, shape, the following three functional expressions have to be minimised.

$$
\begin{array}{ll}
C \frac{l^{3}}{d^{3}}=\frac{I_{1}}{I_{3}}+k_{1} \frac{I_{2}}{I_{3}} & (l, d) \text { given } \\
C \frac{S^{3}}{\pi^{3} d^{5}}=-\frac{I_{1} I_{2}}{I_{3}}+k_{2} \frac{I_{2}}{I_{3}} & (S, d) \text { given } \\
C \frac{\pi^{2} l^{5}}{S^{2}}=-\frac{I_{1}}{I_{2} I_{3}}+k_{3} \frac{I_{2}^{2}}{I_{3}} \quad(S, l) \text { given } \tag{3}
\end{array}
$$

where

$$
\left.\begin{array}{l}
I_{1}=\int_{0}^{1} Y Y^{\prime 3} d X \tag{4}\\
I_{2}=\int_{0}^{1} Y d X \\
I_{3}=\int_{0}^{1} Y^{2} d X
\end{array}\right\}
$$

$X(=x / l) \operatorname{and}^{-} Y\left(=\frac{2}{d} y\right)$ being dimensionless coordinates of the missile.
Now since we are considering the possibility of the missile having a zero-slope shape, i.e. $Y^{\prime} \geqslant 0$, this inequality may be written as

where $\boldsymbol{Z}(X)$ denotes a real variable.
According to the theory ${ }^{8}$ the necessary condition for extremising functional expressions 1 to 3 is identical with extremising a new functional of the form

$$
J=\int_{0}^{1} F\left(X, Y, Y^{\prime}, Z, \mu_{j}, \nu\right) d X \quad j=1,2,3
$$

where F denotes the fundamental function

$$
F=\mu_{1} Y Y^{\prime}+\mu_{2} Y+\mu_{3} Y^{2}-\nu\left(Y^{\prime}-Z^{2}\right)
$$

Here $\nu=\nu(X)$ is a variable Lagrange multiplier and $\mu_{1}, \mu_{2}, \mu_{3}$ are constant multiplier determined ${ }^{8}$ for the three eases as

$$
\left.\begin{array}{l}
\mu_{1}=\frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+k_{1} \lambda_{1}} \\
\mu_{2}=\frac{k_{1} \lambda_{1} \lambda_{2}}{\lambda_{2}+k_{1} \lambda_{1}} \\
\mu_{3}=-\lambda_{3} \\
\mu_{1}=\frac{\lambda_{1}}{1+k_{2} \lambda_{1} \lambda_{2}^{2}} \\
\mu_{2}=\frac{3 \lambda_{2}+k_{2} \lambda_{1} \lambda_{2}^{2}}{1+k_{2} \lambda_{1} \lambda_{2}^{2}} \\
\mu_{3}=-\lambda_{3} \tag{8}\\
\mu_{1}=\frac{\lambda_{1} \lambda_{2}^{4}}{\lambda_{2}^{4}+k_{3} \lambda_{1}} \\
\mu_{2}=\frac{2 \lambda_{2}\left(k_{9} \lambda_{1}-\lambda^{4}\right)}{\lambda_{2}^{4}+k_{3} \lambda_{1}} \\
\mu_{3}=-\lambda_{3}
\end{array}\right\}(l, d) \text { given }
$$

where

$$
\begin{equation*}
\lambda_{j}=1 / I_{j} \quad j=1,2,3 \tag{9}
\end{equation*}
$$

From the calculus of variations it is known that the extremal solution must satisfy the Euler equations

$$
\begin{equation*}
6 \mu_{1} \Psi Y^{\prime} Y^{\prime \prime}+2 \mu_{1} Y^{\prime 3}-\mu_{2}-2 \mu_{3} Y-\nu^{\prime}=0, \nu Z=0 \tag{10}
\end{equation*}
$$

The second Euler equation admits the solution

$$
\nu=0 \text { or } Z=0
$$

the first of which is called a regular shape and the second of which is called a zero slope shape. The extremal are may be composed of one or both of these. Since the fundamental function F does not contain the independent variable X explicitly, the first Euler equation admits the first integral as

$$
\begin{equation*}
2 \mu_{1} Y Y^{\prime 3}-\mu_{2} Y-\mu_{3} Y^{2}=c \tag{11}
\end{equation*}
$$

where c is a constant.
If the extremal arc is composed of more than one sub-ara then the corner conditions

$$
\Delta\left(\mu_{1} Y Y^{\prime 3}\right)=\Delta\left(3 \mu_{1} Y Y^{\prime 3}-\nu\right)=0
$$

must be satisfied. Here $\triangle(\ldots \ldots$.$)) denotes the difference between the quantities evaluated immediately$ after and before the corner point.

The first expression implies that the value of e does not change across the corner point. Also the two expressions admit the pair of solutions

$$
Y=0, \quad \nu=0, \quad \Delta Y^{\prime} \neq 0
$$

and

$$
Y \neq 0, \nu=0, \Delta Y^{\prime}=0
$$

These solutions imply that, (i) a discontinuity in slope can occur only on the axis of symmetry and (ii) regardless of whether there is a disoontinuity in slope, the relation $v=0$ holds on both sides of the corner point.

For the extremal arc to be minimal the Weierstrass condition

$$
E=\mu_{1} Y\left(Y^{* \prime}+2 Y^{\prime}\right)\left(Y^{*^{\prime}}-Y^{\prime}\right)^{2}+\nu\left(Y^{* \prime}-Y^{\prime}\right) \geqslant 0
$$

must be satisfied. Here unstarred symbols stand for the extremal are and starred symbols for a comparison arc. For the regular shape, since μ_{1} is positive for all the three cases [see eqns. (6), (7) \& (8)], the positiveness of E is ensured as long as Y^{\prime} and $Y^{*^{\prime}}$. satisfy the constraint (5). For the zero slope shape, the positiveness of E is ensured provided $\nu \geqslant 0$ everywhere. Thus, we have

$$
\begin{aligned}
& Y^{\prime} \geqslant 0 \text { for regular shape } \\
& \nu \geqslant 0 \text { for zero-slope shape } \\
& \nu=0 \text { at the corner point }
\end{aligned}
$$

TOTALITY OF SOLUTIONS

Considering the zero slope shape $Y^{\prime}=0$, i.e., $Y=$ const., the Euler equations (10) gives

$$
\nu^{\prime}=-\left(\mu_{2}+2 \mu_{3} Y\right)
$$

which may be integrated as

$$
\begin{equation*}
\nu=-\left(\mu_{2}+2 \mu_{3} Y\right)\left(X-X_{0}\right) \tag{12}
\end{equation*}
$$

where suffix 0 represents the corner point.
From (12) we observe that the transition from regular shape to zero slope shape and vice versa will occur when

$$
\begin{equation*}
c+\mu_{2} Y_{0}+\mu_{3} Y_{0}^{2}=0 \tag{13}
\end{equation*}
$$

Also(12)indicates that along the zero slope ν varies linearly with abscissa and so it can vanish at only one point of each zero slope shape and this is the corner point. This implies that the regular shape can be preceded or followed by no more than one zero slope shape and the equation of the zero slope.shape can only be $\boldsymbol{Y}=0$ (a spike) and/or $Y=1$ (cylinder).

If $Y=0$ be the zero slope shape then from (12) \& (13), we must have $\mu_{2}>0$ and $c=0$ 。
If $Y=1$ be the zero slope shape then again from (12) \& (13), we must have $\left(\mu_{2}+2 \mu_{3}\right)<0$ and $c+\mu_{2}+\mu_{3}=0$.

Since no more than two corner points and three sub-arcs can exist, the totality of extremal arcs consists of the following four classes of bodies.

Class I - Bodies composed of regular shape only ($\nu=0$).
Class $I I$ - Bodies composed of a spike followed by a regular shape ($Y=0 \rightarrow \nu=0$).
Class III — Bodies composed of a regular shape followed by a oylinder ($\nu=0 \rightarrow \boldsymbol{Y}=1$).
Class $I V$ - Bodies composed of a. spike followed by a regular shape followed by a oylinder $(\boldsymbol{Y}=0 \rightarrow \nu=0 \rightarrow Y=1$) .

The most general form of the extremat arc is of class $I V$ and with the help of (11) can be represented by the equations

$$
\begin{array}{cc}
Y=0 & 0 \leqslant X \leqslant X_{10} \\
X-X_{10} \tag{14}\\
X_{20}-X_{10} & \int_{0}^{Y} Y^{1}\left(c+\mu_{2} Y+\mu_{3} Y^{2}\right)^{1} d Y \\
Y=1 & X_{10} \leqslant X \leqslant X_{20} \\
Y+\mu_{3} Y^{2}-1 d Y^{1} &
\end{array}
$$

where X_{10} and X_{20} represent the abscissae of the two possible transition (corner) points. Bedies of class I can be obtained from bedies of class IV by putting $X_{10}=0, X_{0}=1$, Similarly bodies of class $I I$ and class $I I I$ can be obtained by putting $X_{0}=1$ and $X_{10}=0$ respectively. Thus from the above descussion we see that

$$
\begin{gathered}
-X_{10}=0, \quad X_{\mathrm{c} 0}=1 \quad \text { for class } I \text { bodies } \\
c=0, \quad X_{20}=1 \quad \text { for class } I I \text { bodies } \\
X_{10}=0, \quad c+\mu_{2}+\mu_{3}=0 \text { for class } I I I \text { bodies } \\
c=0, \quad \mu_{2}+\mu_{3}=0 \text { for class } I V \text { bodice }
\end{gathered}
$$

SOLUTION OF THE PROBLEM

From (4), (9) \& (11), it can be deduced that

$$
\begin{align*}
& X_{00} \text { or }\left(1-X_{10}\right)=(2 \dot{t})^{\frac{1}{2}} \int_{0}^{1}\left(\sigma+\mu_{2} Y+\mu_{3} Y^{2}-\frac{1}{2} d Y\right. \tag{15}\\
& \frac{1}{\lambda_{1}}=\left(2 \mu_{1}-5 \int_{0}^{1} Y\left(c+\mu_{2} Y_{3}+\mu_{3} Y^{2}\right)-\frac{2}{3} d Y\right. \tag{16}\\
& \frac{1}{\lambda_{2}}=(2 \mu)^{\frac{1}{2}} \int_{0=1}^{-\frac{1}{2}} Y^{4 /\left(c+\mu_{2} Y+\mu_{3} Y^{2}\right)^{-\frac{1}{2}} d Y+\left(1-X_{0}\right), ~(2)} \tag{17}\\
& \frac{1}{\lambda_{3}}=\left(2 \mu_{1}\right)^{\frac{1}{2}} \int_{0}^{1} Y^{1} \psi_{0}\left(c+\mu_{2} Y+\mu_{3} Y^{2}\right)^{-\frac{1}{3}} d Y+\left(1-X_{20}\right) \tag{18}
\end{align*}
$$

Combining (15), (17) \& (18), we arrive at

$$
\begin{align*}
=c\left[X_{20} \text { or }\left(1-X_{10}\right)\right] & +\frac{3}{2} \frac{\mu_{2}}{\lambda_{2}}+\frac{2 \mu_{3}}{\lambda_{3}}=\frac{3}{4}(2 \mu)^{\frac{1}{2}}\left(c+\mu_{2}+\mu_{3}\right)^{\frac{1}{7}}+ \\
& +\left(\frac{3}{2} \mu_{2}+2 \mu_{3}\right)\left(1-X_{20}\right) \tag{í9}
\end{align*}
$$

Jain \& Tawakley ${ }^{8}$ obtained bodies of class I only i.e., those bodies which consist of regular shape only. It was shown that such bodies can be obtained upto certain values of k_{1}, k and k_{3} for (l, d) given, (S, d) given and (S, l) given cases respectively: Now we discuss those class of bodies which are minimal for values of k_{1}, k_{2} and k_{3} exceeding those limiting values.
Case 1 : Length and diameter are given
Jain \& Tawakley ${ }^{\text {s }}$ caleulated that in this case

$$
c=\frac{\Omega \lambda_{2}}{\lambda_{2}+k_{1} \lambda_{1}}
$$

and so c is always positive and can never be zero. Therefore, the existence of bodies of class $I I$ and class IV are ruled out and the extremal bodies consist of class I and/or class $I I I$, i.e., the zero slope shape is $Y=1$ ($X_{10}=O$) and so from (13), we have

$$
\begin{equation*}
c+\mu_{2}+\mu_{3}=0 \tag{20}
\end{equation*}
$$

Therefore (15), (17) \& (18) reduce to

$$
\begin{align*}
& X_{20}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{3}} \int_{0}^{1} Y^{1}(1-Y)^{-1}(1+a Y)^{-1} d Y \tag{21}\\
& \frac{1}{\lambda_{2}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{2}} \int_{0}^{1} Y^{4 / s}(1-Y)^{-\frac{1}{2}}(1+a Y)^{-1} d Y+\left(1-X_{20}\right) \tag{22}\\
& \frac{1}{\lambda_{3}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{1}} \int_{0}^{1} Y^{1 / 3}(1-Y)^{-1}(1+a Y)^{-1} d Y+\left(1-X_{20}\right) \tag{23}
\end{align*}
$$

where

$$
\begin{equation*}
a=\lambda_{3} / b \tag{24}
\end{equation*}
$$

In the above, we make the substitution $Z=(1-Y)$, we get

$$
\begin{align*}
& X_{20}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{2}}(1-\gamma)^{\frac{1}{2}} \int_{0}^{1} Z^{-1}(1-Z)^{\frac{1}{2}}(1-\gamma Z)^{-\frac{1}{2}} d Z \tag{25}\\
& \frac{1}{\lambda_{2}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{3}}(1-\gamma)^{\frac{1}{4}} \int_{0}^{1} Z-(1-Z)^{\frac{4}{2}}(1-\gamma Z)^{-1} d Z+\left(1-X_{20}\right) \tag{26}\\
& \frac{1}{\lambda_{3}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{3}}(1-\gamma)^{\frac{1}{3}} \int_{0}^{1} Z-\frac{1}{2}(1-Z)^{\frac{1}{9}}(1-\gamma Z)^{-\frac{1}{2}} d Z+\left(1-X_{20}\right) \tag{27}
\end{align*}
$$

where

$$
\begin{equation*}
\gamma=a /(1+a) \tag{28}
\end{equation*}
$$

These can be integrated in the form

$$
\begin{align*}
& X_{20}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{2}}(1-\gamma)^{\frac{1}{t}} \beta\left(\frac{2}{3}, \frac{4}{3}\right) \boldsymbol{F}\left(\frac{1}{3}, \frac{2}{3}, 2, \gamma\right) \tag{29}\\
& \frac{1}{\lambda_{2}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{3}}(1-\gamma)^{\frac{1}{z}} \beta\left(\frac{2}{3}, \frac{7}{3}\right) \boldsymbol{F}\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)+\left(1-X_{20}\right) \tag{30}\\
& \left.\frac{1}{\lambda_{3}}=\left(\frac{2 \mu_{1}}{c}\right)^{\frac{1}{3}}(1-\gamma)^{\frac{1}{t}} \beta\left(\frac{2}{3}, \frac{10}{3}\right) \boldsymbol{F} \frac{1}{3}, \frac{2}{3}, 4 \gamma\right)+\left(1-X_{20}\right) \tag{31}
\end{align*}
$$

In the above β and F represent Beta and Hypergeometrio functions respectively. From (20), (24) \& (28), we find that

$$
\begin{equation*}
\frac{\mu_{2}}{c}=\frac{1-2 \gamma}{\gamma-1} \tag{32}
\end{equation*}
$$

But (6) \& (19) give

$$
\begin{equation*}
\frac{\mu_{2}}{c}=\frac{k_{1} \lambda_{1}}{3} \tag{33}
\end{equation*}
$$

Combining (32) \& (33), we get

$$
\begin{equation*}
\lambda_{1}=\frac{3(2 \gamma-1)}{k_{1}(1-\gamma)} \tag{34}
\end{equation*}
$$

Again (6) \& (34) give

$$
\frac{2 \mu_{1}}{e}=\frac{2}{1} \lambda_{1}=\frac{2(2 \gamma-1)}{k_{1}(1-\gamma)}
$$

Thus (29), (30) \& (31) can be written as

$$
\begin{align*}
& X_{20}=\left\{\frac{2(2 \gamma-1)}{k_{1}}\right\}^{\frac{1}{2}} \beta\left(\frac{2}{3}, \frac{4}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 2, \gamma\right) \tag{35}\\
& \frac{1}{\lambda_{2}}=\left\{\frac{2(2 \gamma-1)}{k_{1}}\right\}^{\frac{1}{2}} \beta\left(\frac{2}{3}, \frac{7}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)+\left(1-X_{20}\right) \tag{36}\\
& \frac{1}{\lambda_{3}}=\left\{\frac{2(2 \gamma-1)}{k_{1}}\right\}^{\frac{1}{3}} \beta\left(\frac{2}{3}, \frac{10}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 4, \gamma\right)+\left(1-X_{20}\right) \tag{37}
\end{align*}
$$

Further making use of (6), (20),(34), (36) \& (37), we obtain

$$
\begin{gather*}
\left\{\frac{54(2 \gamma-1)}{k_{1}}\right\}^{\frac{1}{2}}\left[\gamma \beta\left(\frac{2}{3}, \frac{10}{3}\right) F^{-}\left(\frac{1}{3}, \frac{2}{3}, \gamma\right)-(2 \gamma-1) \beta\left(\frac{2}{3}, \quad, \quad F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)\right]\right. \\
=(1-\gamma)\left[1-3\left(1-X_{20}\right)\right] \tag{38}
\end{gather*}
$$

Eliminating X_{20} from (35) \& (38) and making use of the well-known properties of the Hypergeometric functions (see Appendix), we finally obtain

$$
\begin{align*}
256 k_{1}(1-\gamma)^{8}= & 27(2 \gamma-1)\left[2(1-\gamma) \beta\left(\frac{2}{3}, \frac{4}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, \gamma, \gamma\right)+\right. \\
& \left.+(2 \gamma-1) \beta\left(\frac{2}{3}, \frac{7}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)\right]^{3} \tag{59}
\end{align*}
$$

This equation gives the values of γ for known values of $k_{1}(>1.6293$, see Appendix). Knowing γ we can obtain the transition point from (35). The relation between X_{20} and k_{1} is presented in Fig. 1.

Hig. 1-Abscissa of the corner point, when (l, d,) are given.

Knowing X_{20} the shape of the minimising curve of class $I I I$ is known by using (14) as

This relation has been shown in Fig. 2. Further the values of λ_{1}, λ_{2} and λ_{3} can be calculated from (34) (36) \& (37) respectively and then the value of the factor $C \frac{l^{3}}{d^{3}}$ is obtained from (1) and is represented in Fig. 3.

Fig. 2-Optimum shapes, when (l, d,) are given.

Hig. 3-Minimum value of the factor $C \frac{l^{3}}{d^{3}}$, when (l.d.) are

Case 2 : Surface area and diameter are prescribed

Since the drag of a spike is zero regardless of its length and it does not also add to the volume, we can take any extremal arc of class I and generate from it an infinite number of equal ballistic factor solutions of class $I I$ by adding a spike of arbitrary length in front. Similarly, we can take any extremal arc of class $I I I$ and generate from it an infinite number of equal ballistic factor solutions of class $I V$ by adding a spike of arbitrary length in front. For these reasons, in case the length is free, only solutions of class I and/or class III are considered. These solutions occur when the friction parameter k_{9} is smaller or larger than a critical value respectively. Jain \& Tawakley ${ }^{8}$ found that bodies of class I exist for $k_{2} \leqslant c \cdot 9113$. Here we disouss bodies of class III. It was proved that when surface area and diameter are known, $c=0$. Since $Y=1$ is the zero slope shape, we have from (13).

$$
\begin{equation*}
\mu_{2}+\mu_{3}=0 \tag{41}
\end{equation*}
$$

The shape of the minimising curve from (14) is easily represented as

$$
\left.\begin{array}{ll}
\frac{X}{X_{20}}=1-(1-Y)^{2} & 0 \leqslant X \leqslant X_{20} \tag{42}\\
Y=1 & X_{0 n} \quad X \leqslant 1
\end{array}\right\}
$$

Therefore (16), (17) \& (18) give

$$
\begin{align*}
& \frac{1}{\lambda_{1}}=\frac{81}{163 X^{2}} \tag{43}\\
& \frac{1}{\lambda_{2}}=\left(1-\frac{2}{5} X_{20}\right) \tag{44}\\
& \frac{1}{\lambda_{3}}=\left(1-\frac{11}{20} X_{20}\right) \tag{45}
\end{align*}
$$

But (15) gives

$$
\begin{equation*}
X_{20}=\frac{B}{2}\left(\frac{2 \mu_{1}}{\lambda_{3}}\right)^{\frac{1}{2}} \tag{46}
\end{equation*}
$$

Making use of (7), (43), (44) \& (45), it can be deduced that

$$
\begin{align*}
& X_{20}\left[9\left(1-\frac{2}{5} X_{20}\right)^{2}+\frac{160}{27} K_{2} X_{20}{ }^{2}\right]= \\
& -40\left(1-\frac{2}{5} X_{20}\right)^{3} \tag{47}
\end{align*}
$$

This gives the transition point for known values of $k_{2}(>0.9113)$ and is plotted in Fig 4. Knowing X_{0} we have the geometry of the minimal curve from (42) and is illustrated in Fig. 5 . Also, λ_{1}, λ_{2} and λ_{2} are known from (43), (44) and (45) respectively and thus the values of $C S^{3} / \pi^{3} d^{5}$ are colculated from (2) and are represented in Fig. 6.

Fig. 4-Absoissa of the corner point, when (B,d) are given

Fig. 5-Optimum shapes, when ($(\mathbb{S}, \mathrm{d}$) are given.

Fig. 6 -Minimum value of the factor $C \frac{S^{3}}{\pi^{3} d^{6}}$ are given.

Cuse 3: Surface area and length are known
Jain to Tawakleys deducea thot

$$
\begin{equation*}
c=\frac{5 \lambda_{2}^{4}-k_{3} \lambda_{1}}{\lambda_{2}^{4}+k_{3} \lambda_{1}} \tag{48}
\end{equation*}
$$

In this case there is a possibility of c becoming zero. Jain \& Tawakley showed that for $c \geqslant 0$ bodies of class I exist and hold for $k_{2}<19 \cdot 5313$. For $c=0$ the solution consists of bodies of class $I I \quad\left(X_{0}=1\right)$. Therefowe, for zero slope shape, $Y=0$. From (8) and (19), we see that $\mu_{2}+\mu_{3}=0$ and so the slape of the optimizing curve of class $I I$ is

$$
\left.\begin{array}{ll}
Y=0 & 0 \leqslant X \leqslant X_{10} \tag{49}\\
X \neq 1-\left(1-X_{10}\right)(1-Y)^{\frac{2}{2}} & X_{10} \leqslant X \leqslant 1
\end{array}\right\}
$$

Using (49) in (16), (17) \& (18) gives

$$
\begin{align*}
& \frac{1}{\lambda_{1}}=\frac{81}{163\left(1-X_{10}\right)^{2}} \tag{50}\\
& \frac{1}{\lambda_{2}}=\frac{3\left(1-X_{10}\right)}{5} \tag{51}\\
& \frac{1}{\lambda_{3}}=\frac{9\left(1-X_{10}\right)}{20} \tag{52}
\end{align*}
$$

Also from (15), we have

$$
\begin{equation*}
\left(1-X_{10}\right)=\frac{3}{2}\left(\frac{2 \mu_{y}}{\lambda_{3}}\right)^{\frac{1}{t}} \tag{53}
\end{equation*}
$$

Making use of (8), (50), (51) \& (52), lead to

$$
\begin{equation*}
x_{10}=1-\left(\frac{625}{32 k_{3}^{\prime}}\right)^{\frac{1}{b}} \tag{54}
\end{equation*}
$$

This gives the transition point as a function of $k_{3}(>19 \cdot 5313)$ and is represented in Fig. 7. Knowing X_{10}, we know from (49), the geometry of the minimising arc andis given in Pig. 8. Also λ_{1}, λ_{2} and λ_{3} are calculated from (50), (51) \& (52) and so $C \frac{\pi^{2} l^{5}}{S^{2}}$ is known from (3) ind represented in lig. 9 .

Fig. 7-Abusissk of the orner puint, when (S, l) are given.

Fig. 8-Optimum shapes, when (s, l) are given.

APPENDIX
The analysis given for the first case when length and diameter are known in advance can be utilised to find analytically the critical value of k upto which only regular shapes of class I are possible. For this putting $X_{20}=1$ in (35) \& (38) give

$$
\begin{align*}
& 1=\left\{\frac{2(2 \gamma-1)}{k_{1}}\right\}^{\frac{1}{3}} \beta\left(\frac{2}{3}, \frac{4}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 2, \gamma\right) \tag{55}\\
& 3 \gamma \beta\left(\frac{2}{3}, \frac{10}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 4, \gamma\right)-3(2 \gamma-1) \beta \\
& \left(\frac{2}{3}, \frac{7}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)=(1-\gamma)\left\{\frac{k_{1}}{2(2 \gamma-1)}\right\}^{\frac{1}{3}} \tag{56}
\end{align*}
$$

Fig. 9 -Minimum value of the factor $O \frac{\pi^{2} l^{5}}{S^{2}}$, when ((S, l) are
Eliminating k_{1} from these two expressions gives

$$
\begin{gathered}
3 \gamma \beta\left(\frac{2}{3}, \frac{10}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 4, \gamma\right)-3(2 \gamma-1) \beta\left(\frac{2}{3}, \frac{7}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)= \\
=(1-\gamma) \beta\left(\frac{2}{3}, \frac{4}{3}\right) F\left(\frac{1}{3}, \frac{2}{3}, 2, \gamma\right)
\end{gathered}
$$

Making use of the following well known property of the Hypergeometric functions

$$
\begin{gathered}
\gamma\{\gamma-1-(2 \gamma-1-\alpha-\beta) x\} F(\alpha, \beta, \gamma, x)+(\gamma-\alpha)(\gamma-\beta) x F(\alpha, \beta, \gamma+1, x)- \\
-\gamma(\gamma-1)(1-x) F(\alpha, \beta, \gamma-1, x)=0
\end{gathered}
$$

the above may be simplified as

$$
(1-\gamma) F\left(\frac{1}{3}, \frac{2}{3}, 2, \gamma\right)-(2 \gamma-1) F\left(\frac{1}{3}, \frac{2}{3}, 3, \gamma\right)=0
$$

Solving this equation for γ the critical value of k_{\perp} upto which regular shapes of class I are possible can be obtained by using (55) as $1 \cdot 6293$.

ACKNOWLEDGEMENT

The authors are grateful to Dr. A.K. Sreedhar, Director, Defence Science Laboratory, Delhi for granting permission to publish this work.

REFERENCES

1. Berman, R. J., AIAA J, 5 (1967), 166-167.
2. Fink, M. R., 'Muximutm Ballistio Cosffisientin Nowtonian Flow' (United Airoraft Research Laboratories Report No. UAR-F-62), 1967.
3. Mrele, A. \& Huang, H. Y., 'Missile Shapes of Minimum Ballistio Factor' (Rice University Aero Astronautics Report 32), 1967 also J. Opt. Theory Appl. 1, 151-164.
4. Hurdmann, J. C., "Blunt Nosed Missile Shapes of Minimum Ballistio Factor" (Rice University Aero Astronautics Report 32), 1967 also J. Opt. Theory Appl., 1, 1967, 242-252.
5. Jain, S. C. \& Tawakley, V. B., AIAA J., 8 (1970), 1711-1712.
6. Jain, S. C. \& Tawaklex, V. B., Astromautica Acta, 16 (1971), 277-279.
7. Tawaklex, V. B. \& Jain, S. C., Astronautica Acta, 18 (1973), 87-90.
8. Jain, S. C. \& TAWAKLEX, V. B., Astronautica Acta (Supplement), 18 (1974), 119-126,
