FLOW OF A CONDUCTING FLUID WITH SUSPENSION OF PARTICLES IN CYLINDERS
WITH ARBITRARY TIME VARYING PRESSURE GRADIENT
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The problems of unsteady flow of a viscous incompressible conducting fluid containing a dilute suspen-
sion of small inert spherical particles in cylinders with circular and sectoriai cross-sections, in the presence of
a radial magnetic field, have been discussed. The analysis applies to fiows with pressure gradients which are
arbitrary functions of time. Explicit expressions for the exact velocities of the fluid and that of the particles are
obtained by using the methods of operational calculus—the Laplace transform, the finite Hankel transforms
etc. Numerical results have been obtained for the developing flow due to a constant pressure gradient, when
the flow is taking place in a coaxial circular cylinder. The effects of mass concentration and relaxation time
of particles and the magnetic field on the velocities have also been discussed.

The study of MHD flow problem is important
because the behaviour of the conducting fluid is
considerably changed in the presence of magnetic
field and many new phenomena are observed.
Gold! has obtained an exact solution of steady
one-dimensional flow of an incompressible vis-
cous, electrically conducting fluid through a cir-
cular cylinder in the presence of an applied (trans-
verse) uniform magnetic field. Singh & Rizvi2
have investigated the impulsive motionof a vis-
cous liquid contained between two ' concentric
circular cylinders in the presence of a radial mag-

. - :
netic field [(H/r)i]. Singh3 has also discussed the
same problem in the presence of an axial magne-
tic field H. . ‘ '

" In recent years, the problems of fluid flow em-
bedded with particles have gained increased atten-
tion of mathematicians and engineers in view of
* their applications in a wide variety of engineering
situations including environmental pollution, com-
bustion fluidization, and more recently blood flow
etc. It is due to this reason a number of studies of
flow of a filuid embedded with particles4—14 have
appeared in literature. Rao?? has discussed the flow
of a dusty gas in a circular cylinder under the infli-
ence of an exponentially time varying pressure gradi-
ent. Singh & Pathak!l have considered the flow of
the dusty gas in a tube with sector of a circle as
cross-section under the influence of exponential

pressure gradient, Gupta & Guptal2—13 have studi-
ed the flow of the dusty gas under the influence of
an arbitrary time varying pressure gradient in a
rectangular channel in circular cylinder and
in a cylinder whose cross-sectionis a sector of a

circle respectively.

_ The problems of flow of fluid embedded with
particles in the presence of magnetic field become
more complex but npot intractable, Yang &
Healylt have studied the flow |induced in an
incompressible fluid embedded with ~particles by
an infinite flat plate set into motion in its plane by
oscillation and impulse in the presence of a
transverse magnetic field, neglecting the electro-
magnetic induced effect. '

The present paper is a generalization of the
work of Gupta & Guptzl3. In this paper, the
authors have studied some of the problems. of
flow of a viscous electrically conducting fluid -
containing a dilute suspension of small inert
spherical particles in cylinders with non-conducting
walls, in the presence of a radial magnetic field.
The flow has been considered in (j) a circular cy-
linder, (i) an annulus bounded by two coaxial
circular cylinders, (jii) a cylinder ,whose cross-
section is a sector of a circle and (iv) a cylinder
whose cross-sectionis an annular sector. It is the
purpose of this paper to develop the general time
dependent flow model "and to obtain explicit
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EQUATIONS OF MOTION

expressions for both the fluid and particles velo-
cities, when the pressure gradient is an arbitrary
function of time, in exact form. The changes. in
velocity profiles of the fluid and particles with time,
for a constant pressure gradient, have been drawn
graphically whenthe flow is taking place through
the annulus.

In the present investigation, it is assumed that

the cylinders are of infinite length and the flow is
considered along z-axis, which concides with
the axis of the cylinder. The appropriate equa‘uons,
which assume Stokes drag law, are the well-known
momentum equations for the fluid and particless.
. These equations after introducing the electro-
magnetic force, in cylindrical polar coordlnates
(Rs 0 z) are

Bu' 1 - >
ar = T S Ve +vVia +
KNO - -> L-—> -
+ Y (v—u)+ U XB)
| M
ST = @ -
_ (2 .1 9 Lﬁ)
ve= (3R2+T—QE+R2 ) @

" where u and v -are velocity vectors of the fluid and
particles respectively, m is the mass of a particle, No
the number density of the particles which is
constant throughout the motion, K' the Stokes
resistance coefficient, T the time, p the pressure,

» the . kinematic viscosity, p the density of the
= - .
fluid, J and B are given by Mexwell’sequations

and Ohm’s law, namely

-

curl H = 4 «J 3)
- ,

div B=0 4
-

curl E=0 &)

. v > - .
],-—_-o'e[E—l—(uXB) (6)
’ SOLUTION OF

(z) Circular Cylinder

Let us consider the motion of the conductmg
fiuid in a circular cylinder of radius a. For the
present geometry, due to axi-symmetry the velo-
cities are lndependent of 6. Therefore, the
Egs. (8) and (9) governing the motion reduced to
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In the present investigation, it is.assumed that the
effects of the induced magnetic field and electric
field produced by the motion of the electncally
conductlng fluid are negligible and no external
force field is applied. With these assumptions the

- -
magnetic term J X B in Eq. (1) is given by
- = _302 o, —>
JXB=— R2 U Q)

where By ( = u,Hy) is electro-magpetic induction,
pe and o, are the magnetic permeability and
the conductivity of the fluid respectively.

In the present investigation the velocity compo-
nents of the fluid in the radial, tangential and axial
are direction
up = 0, ug = 0, u, = u, (R, 6, t)
and those for the particles are  *

va=10, vg =0, v, = v, (r, 6, 2).

Introducing the following non—dlmensmna,l quan-
tmes ‘

z' = zla, r = gla

o = pa? pv% t = Tv/a2, the equatlons (1) and (2)
in view of (7) become v

u=aulv, v=av,lv

du _ (32u 1 du . l'g’fl)
9t ’az T\3=tr :'3_;+’_2902 -
M2
—I—B(v—-u)—-;—;u ®
and
%% = (u— v, >(9)

where f = Nom/p is the mass concentration of par-
ticles, = = (m/K)/(a2/v) is the dimensionless relaxa-
tion time of particles, 8 = f]7 = NoKa2/pv, 7" = 1]
and M = (o, By?/u)} is the Hartmann number.-

Using: the above fundamental equations the
authors have solved some basic problems of axially
symmetric motion in the following sections.

THE PROBLEMS

12u
3” _f+ (372+, qr) + e 22 4 (10)
a.nd
5 ), (n
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where €2'/3z"= —f(t) , is an arbitrary function
of time ¢.

To solye the problem, we have coupled the Egs.
(10) and (11) with the help of Laplace transform.
Therefore, it is necessary to specify boundary
conditions only for the fluid, whereas the initial

conditions are required for the particles as welt

as for the ﬂuid.

¢

The initivé,l and boundary conditions for thq
problem are

Initial conditions :

u(f, 0)=0 1 .
o (12
v(r, 0)=0 )
Boundary conditions :
u(1l, t)=20 1
or (13)
u (0, t)=finite J

Applying the Laplace transform to Egs. (10)
and (11) under the conditions (12) and then solving
the transformed equations for 3 and 5, we get

oy (% 10u_ M2\ _ s
su-f(s)-?—(arz-i— i T u) gl (14)
—a— T’ u :
v = T’+S ’ (15)

where %, » and 7(s) are the Laplace transforms of
the respective expressions and s is the parameter
of the transformation. The boundary conditions

(13) transformed to
(1,8)=0 ,
( ) ) 16)
(0, s) = finite J

Now applymg the finite Hankel transform de-
fined by

1 oo
ii(ﬁpl)={ w8 rd (pirydr, (17

where p; is a positive root of the equation .
Ja(p;) =0, (18)

to Eq. (14) and on using the transformed boundary
conditions (16),

we get
su | p 3 Ja—1 (Bi) St,a (p)—pi? u 7 u,
(19)

where
Sulps) is the Lommel functlon, Erdely115

Now to obtain u, first invert the Hankel trans-
form using the Hankel inversion formula Tranter!,
to get

(' +s ) f (S)

~u(ns) “22 s2+s(r'+/3+ﬁg Y FrpE X

X [-—~ Jar.a(pi) S1, M(Pi) Jau(pi1) ] 20)

DilI ' (p:)]2

the summation being over the positive roots of
the Eq. (18).

Fma.lly invert the Laplace transform usmg the
convolutlon theorem, we get

ulry 1) = Z { ff(r——x){(«ﬁ#)exp(alx) (e tr)

=1

l)JM._l(p@)SI,Mm) Jm(p;r)}
p,,(al— ag) [JM,(pz)]Z

- (2D

ekp (azx)}dx} {( i

where

T, : s
= | T (e (22
Substitute the value of % from Eq. (20) in (15) and

then invert the Laplace transform, to get the ex-
pression for the velocity of the particles

or,t) = 2? ({ f f(t—x) {exp (oy%) —exp (a«x)}dx}

z—l
(: QJM -1 (P@) SL,M([%) u(pir) . ‘
: bi(a;— ‘12) } [JM (ﬁz)]z (23)

(i) Annulus

- Here we shall discuss the same problem when
the flow is taking place in the annular space bet-
ween two concentric circular cylinders of radii
a and b (a<b). For the present geometry, the

_equations to represent the motion are (10) and

(11), and the initial and boundary conditions are

Initial conditions : ,
u(r,0) =0 )

S ¢
v(r,0) =0 J 173 )
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Boundary condltrons :

=0y
u(e,t)=0 "J°

where " o = b/a.

In thrs case using the Laplace transform under o

the initial conditions (24) and solvmg the result-»
ing equations for u y and v, we get

=F % | 1Ju_ M2-Y} ~E§‘___ 36
'and ‘
- —_ ! - ’ ; “ ) 27
i oo
With the transformed boundary conditions |
a(l,s)=0 . :
r (28)
u(o‘ s)=20 J

We shall solve the eq. (26) with the help of the
finite Hankel transform deﬁned by :
—_ 0
u ('qi’s ) =.
i

u(r, s)rBM(q;r)dr, 29)

where -
Bu(qir) = JM (q@r) Yar( g ) — YM(%") Ym(%) (30).

i
g is a positive root of the equation

Ju(gio) YM(%)— Yu(gio)Ju(g)=0 G
and Jyu (gi,r) . Yulqir) are the Bessel functions of
first and second kind of order M and argument

gir respectively.

Applymg the Hankel transform defined by Eq.
(29) to (26) and on using the transformed boun-
dary condxtrons (28), we get

=10 [routgnr] - g2 BT G

Evaluating the integrals involving in the above
equation with the help of a known result, Erdalyils. -

J r X Larlgir) dr =q—:>‘ [(H—M—,— DZalgir) S -\

(@) = Latan)S, (@) ] (33
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Sty (qz)} BM (gir)

M-, M1

~ ‘where A is an arbitrary constant and {u(gir) re-

presents -either of the Bessel function of first or
second kind and S, y(gir) is the Lommel function,
1t can easily be shown that :

By (qir) di Ju(g) , 1(qi0) —
!" M(q") r= [JM(q )Sl ulg )
‘ = Su | 69

 Substituting Ep. (34) in (32) and then proceeding

exactly on similar lines as in the ﬁrst problem,
we get :

u(r,t)=

(ﬁr‘ﬁﬁ) {JM‘%@@) "‘“JM ((IW)}

[ f fl - x) {(Bl +T )exp (Brx) —

— By ™) exp (B) } dx ] (35)

and
or e JM(q@a {Fu(g)Sh, M(qw)—JM(qw)Sr,M(qz)}; L
R I R
B ya: o -

P s | [ o= e 809 -ox0 0030, G

: 0

where

B ‘ . / 1/2 .
-4 BT gt | 6D

B2

and the summation j=1 to . in éqnations (35)
and (36) being over the positive roots of the equa-

" tion (31).

(iii) Circular Sector

Now we consider in the present case the same
problem when the flow is taking place in a cylinder

~ whose cross-section is a sector bounded by two
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radii 6 = 4 o and the c1rc1e R—.a (Fig. 1. For
the present geometry equation to represent the

A ~motion are (3) and (9) and the initial and boundaly'!

condmons are

Fig. l——Geometry of cross-section and coordlnate system
(Case 3)..

f .
Initial condmons :

u(r,0,0) A o
RN )
v(r,0,0) =0 )
Boundary conditions :
Cu(l,6,t) =0 ) N
ro (39
u(0 t) 0 J o

w(r (40)

In view of _‘equﬁlon“'(QO) it is ev1dent that the -
~ flow is symmetrical about planes 6 =0, therefore.
the flow in the region 0.<0<a rscons1dered and:

accordingly the Eq. (40) changes to

u(r,a,t)::O 1

’ (41)
: U
SR ',-‘—aﬂOforO—O JI

b'I"o ,so,lvek the problem, first apply the/Lapla-ce

transform to equations (8) and (9), and solve the

resulting equations for # and » and then apply
the finite cosine transform defined by

(42)

= ‘ o
u(r,ms)=/f u(r,0,s)cosky 0do,
5 =4 e

u(r, e ) == Z

. |{
’L

' Flow of‘ a Conducting Fluld in Cylmders

where

m1 -
I e “

to the resultlng equatlon for u under the trans-

formed boundary condmons (41), to- get

_ <~1)"“‘ ¥ 1 9y
RGP0 ( Jf"‘é?_-
M2 o -
— ;{2_ l’lu) B'S+S u. g44)

Now proceedmg exactly on s1m11ar lies as in
‘the first problem we obtam the expresswns for -
the velocities of fluid and partlcles as :

4 <2 &

(“l)m +1 Jq——l (&) Slaq( E@)

Am &; (71 — 72

m—O i=1
X [{ J‘ f t—x){ i+ T')exp(}’&?)f-(?/z%?T")?xﬁ(yzx) }
.0 - . ‘
S (£ir)cos dm 67 .
[J',\m (&)]2 o ] - (45)

{ f fu= {eXp ) “ exp (v;x) :dx ]

0

‘ \dx} '0’

1)m+1 Jo—1 (€5 S (fi)
fvi()’l — 7’2)

o(r,0,t)

Jy(€ir) cos X0 ]

e | 0.
where ° ’ |
1 : ;
e | B ) T+ B+
Y2 ‘ -
—aveape, @
= M2+ An® 48)
an’d/’ £ is a positive root of the equation -
Jq(fi) =‘O.’ (49)
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The summation}j=1 to oo in equations (45) and (46)
being over -the positive roots of equation (49).
(#v) Annular Sector

In the last caée, we have investigated the same
problem when the flow is taking place in a cylin-

der whose cross-section is an annular sector bound- -

ed by two radii 0=+« and the circles R=a
and R=b, (a<b) as shown in Fig. 2. For the
present problem equations (8) and (9) represent
‘the motion and the initial and boundary conditions
are

A

Initiallconditions' r
u(r, 6,0) = 0 ) -

N (50)
u(r, 8, 0) =
' Boundary conditions :
u (1,6, 1) = 0 :
L (51
u(,0,8)=0]J ‘
(52

u(r,ia,t)=0

/

Fig. 2—Geometry of cross section (Case 4) and coordmate
system,

" The solution of the problem in view of initial
and boundary conditions (50) to (52) can be ob-
tained as in previous problems (viz. with the help
of Laplace transform, finite cosine transform and
the finite Hankel transform for therange 1 to o).
The respective expressxons for the velocnty of fluid
and particles are

—1)™ J, (i9) {Jo(0) Siy ¢ (nio ) — Ty (0i6) S1, ¢ ()}

(
Am

.u(r0t)— ii
, =0 1=1

¢

(81— &) Vo) — Jo? (nio)}

l
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{ f flt — x) {(81 + ') exp (81x) — (82‘ + 1-')‘ exp . (82x)} dx } Bq(n;r) €Os Ay 0, (53)
: o
01y = 27 S D" Tufwo) et St o () () Sh )}
v, 0 =73 Ko B —8) {722 () — Jo¥ (o)}
m=10 i=1
X [f [t — x){exp (8:x) —exp (%)} dx]Bq (mir) €Os A, 54
0 ) o N Lo
where
8 142
s L R R e R e § 55)
2 .
B, (ir) = Ty (ir) Yq (i)=Y, (ir) Ty (i) (56)
and 4; is a positive root of the equation
J, (i o) Yo(m) — Yq (mi @) Jq () = 0. (57
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SPECIAL CASE ‘ o R

The expressions for # and v obtained in the above cussions, the ﬁow of the conducting fluid in the
sections are of general character and they are not coaxial cylinder when the flow is taking place
restricted to any special form of the pressure gra- under the influence of - a constant pressure
dient. As an illustrative example of the main gradient C. Substituting f(¢)=C in equations (35)
results, we have -pqn;idered in the following di_s-, and (36) and on simplifying further, we get

‘o0

u(rt)=mC z J.M (gi9) {Ju (g:) S1, M(qza') - JM (gio) Sl, M (q,) } By (qd‘)

i2 {Im? (q5) — I (W’)}
=1

.

% ,[1 _ (BLtg?) ?XP (ﬁ221:(§22~+42i) exp (Bit) ] (58)
and
v (r, t) ™ C w_\ JM (‘100) {JM(%) S1, u (gio) — VJM (gio) S1, u (g:)} BM!(qt")
= - mQUhN%%—Jm2MWB
% [1 B exp (ﬁz;)l — 222 exp (Bit) ] . (59)

To express Egs. (58) and (59) in further simpli-- ston for a function f(r) over the range 1 to o is
fied form, we note that the Fourier-Bessel expan- given by, Tranterl6

fO =D AiBular), N N o ©0

t=1

where the summation being over the positive roots of equation (31) and the coefficients A4; ére given by

72 qi2 Ji? (gio) . | , ,
4 =5¢e l(‘fli)—-lﬂz (quU J)r B ) dr ] | : 46D
. ' 1 . E

Expressing r#, r—¥ and r? in terms of Fourxer- therein w1th the help of equation (33) and on
Bessel expansion (60) and evaluating the integrals simplifying further it can be shown that

. z Jar (gi 0) { Ju (9:) Su ar (g o) —JIu (qi 0) S1, 2 (¢:) } Bu (gi r)
9% {In® (9:) — Ju? (g; @) }

: 1 oM — o2 o oM — g2 - 4
T 42 oM — gl T oM — oM M_"r] (62)
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i /-—— 'n':C z JM (q'» 0') [JM (q'z) SJ’M (‘I@ ‘7) e JM (g ).:SDM (@) ] Bur (qz r)
. ' ; qﬁ [ JM2 (%) — JM2 (‘Iv ")

) lwu

(ﬁl + qﬁ) exp (52 t) g (Bz + qﬁ) eXP (Bl t)
I = I @
. / o — a2 L oM g .
v(r,t) = 73 6M2 [ _z__aM”rM—l— /';jf:’;";%‘f"ﬂy—*rﬁ]ml
b . ”Cz Ju (¢I: 0) [JM (%) ShM (g U) — Ju (g 0) Siu (Qe) ] BM (g ’)
e ',;:_1 ' S [JM2 (%) o 7M2 (% 0') ]
[ B1.exp (Bo t) — ﬁz exp fﬁl f) ] ‘ , R (64)

Bi— B,

J

” vThough the equatlons (63) and (64) become 1nd'e- and usmg the known result Erdehlﬁ R
terminaté when M=0 or 2, yet-they tend to finite = - g ks

values as M—0 or 2.. Thus- 1¢tt1ng M->0and 2. Sbo (/\) ~ 1, sz ()\) i ()(2 L 4), ‘(65‘)“‘:

¥

* these equations become - . | CE i

| MR ;G; long 0 @9) B @)
L un = [(1 & G ] ,?Zqﬁwo(q.)wo(qm)l

=

(B a®) exp (Boﬁt}; (§:+qﬁ) ex? (Bf D R

; Jo(4s o) Bo (4i 1)
9o (@) + Jo gi o) ]

: Clog ~N
. ’!(", t) = T[ (1 - r2)——*(1——‘ 02) ;,.]‘(;go | CER

el S0 0o | ©n

Bi— 32 -

s



id in ,C&'_lin‘c‘lers .

ety 7
ulr, 1) = 4 [ﬂ(a‘i—«l) log"‘“sm"g']fﬁ |

aC z Jz (i a)[(q# o — 4) Ty (qz) — o (g2 — 4) J (qz )18, (qz r)
o oqﬁ [Jz?(%)—Jzz(qzo)] e

o e

[ (B +q.,2) exp (/32 l‘) - (ﬁz + %) exp (Bl 1) ] \ . : i (68)
, - /31—*/32 , R
\and 3 B .
R ml) Tk ] - S
SENG ¢ —r21 — e
iv fr’ t) 4 [ r2 (ot — 1) 0g o ; F Og r I e eIt
e z Jg (q, cr)[(q@ o? — 4) T () — o (%2 — 4) J2 (lIc 0)]32 (% r)
- , o g? To2 (g)) — J22 (¢3)
o Sod=Ll v L L - ; Y i . B o
« s[f'/al exp (,32 £)— B egp (,31’ o ] | A ey T
: /31—/32 A e
respEctlvel?" SEITRE S R S T " Lo g T
Equatlons (66) and (67) 1epresent the velocmes R .Z{h?ﬁ_fé\l f [ ¢.(‘q.:~r)’_s]: .a’r,, : »(70): -
of the fluid and partxcle in the absence of magnetle S i=1 o1 R
’ field.’ - o S “fwhere A2 “are the coeﬁ’iclents in the- generahs~

. Now maklng use of Bessel’s 1nequa11ty, whlch " ed Foutier’s ‘expansion of ¢(gyr)in terms of By
states that for an orthonormal set BM (g: r), whe-‘ (g:r) and (1, o) is the interval of orthonormahty

ther closed or not, we have s : Ev1dently the trans;ent part T in Eq." (63) satlsﬁes
I nC Z Ju (qz o) [ Ju (¢) St (i 0) — JM (qz o) St (¢9) ] BM (@ 1) o
%2 [ JM2 (@) — JIn? (th 0) ! : o
< [ (Bl ) exp (8 1) & (B + 09) W] L L

ﬁl“ﬁzk / .

- where " and B2’ are the values of P& B at the smallest root q; of equation (31)

Hence from equatlons (63) and - (58), we have ' \ " e

/ : y )
( : ~M 52 ’ oM - 52 -
J oo —¢ o o
M r—M — r2 X.
4 — M2 —-‘.M_..O-M oM — o—M - .

ufr,t) =

x[l( (B + %) exp (B t)—(Bz+q12> oxp (B ’>] | . "(725
: ) 131—52 . \

N LS R - H

DRSO c B ’ ! ,. 179



Der. Sci. )., VoL. 30, OcroBer 1980

FolloWing the same procedure the expression for the vqlocity of the particles is

' C o H — o? oM —g? |
I)(r,t): | 4— M2 [Cr—'M——o'M M _—————GM—U'“M rv M_r2] X
B’ exp (B 1) — By exp (B’ 1) ] |
X 11— , . 73
[ B — By ™)
- . , e
Mean velqczty o 17 fo or d6 dr
The dimensionless mean velocities are given , Y
: ' v¥ (75)

by

2 o
f f u.rdd dr
1

ut =021r o
f f r do dr
0 1 }

(74)

.DISCUSSION

It is interesting to observe from Egs. (45), (46)
and (53), (54) that if we let the sectorial argle be
2 x the resulting solutions do not correspond to
the flow through the circular cylinder and through
the annulus. It is because in these cases we shall

“ have a semi-diametral wall in the cylinder extend-
ing along the length of the cylinder and joining
the axis with one of the generators of the circu-
lar boundary.

014 -

Fig. 3—Velocity profile of fluid and particles for values of
¢t indicated when f=0.1, r = 0,1 and M =0

180 '

_0

. 2% [0

f f r do dr
‘ 0 L ‘
Thus Egs. (63) and (64) or (72) and (73) may be
integrated to find the mean velocities for a cons-
tant pressure gradient. The numerical results
of the mean velocities are shown in Fig. 7.

s

In the Figs. 3 to 6, we have drawn the velocity
profiles of the fluid and particles when flow takes
place under the influence of a constant pressure -
gradient C through the annulus. Fig. 3 shows
the velocity profiles of the fluid and particles in
the absence of magnetic field, while Figs. 4 to 6
represent the velocity profiles for values of M
as indicated in figures. From these figures it is
observed that the fluid moves faster than the parti-
cles and as time ¢ increases the velocities approach

0:12 4
U ———
V e tzo0
0+10 - t=03
. 1/65\\ i
. / //, \\ t=0-2
\
. 0:08- . N
/ . . \ t:=01,
/ - \
g ,/, 02 >~ <
’ i ’ h \
006 1) ’ \ \
v A O\
/ \
; // // \\ \\
. AY
oosd [ /1 N\
N ) I/ \\ \\
Pl ¥
I,/ - -~ (3] \\\ \
oco2d ff -~ R
Y /A4 N
s \
,/ \\
\\\
0 v T T T -1
L 12 YA 16 18 20
r
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the steady states. With increase in the magnetic
field the velocities of the fluid and particles dec-
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Flg 5—Velocity profile of fluid and particles for values of ¢
indicated when f= 0.1, 7 = 0.1 and M =2,

Fig. 7 shows some typical examples of the re-
sults obtained. It is observed from this figure
that the fluid-particles velocity difference is small
when 7is small and large when + is large. At
low particle concentration, the fluid moves the

particles with it at all times when 7 is small. But

with large 7, the fluid flow is unaffected, but it
results in large fluid-particle velocity: difference.
Large particle concentrations result in lower
particle ' and fluid acceleration. For larger
7, the fluid starts accelerating sooner but the parti-
cles start later, and the time to reach steady flow
is also increased. Finally the fluid and the parti-
"cles accelerate to the same final steady state,

In the absence of magnetic fieldi.e., when M0

the results (21), (23) and (45), (46) corresponds

Flow of.a Conducting Fluid in Cylinders

" reases. For larger values of M the velocity pro-

files become more flattened.
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Fig. 6--Veloc1ty profile of fluid and partioles for values of t
indicated when f = 0.1, + = 0.1 and .M=3,
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Fig, 7—Mean velocity of the fluid and partlcles for{)f =
0.10, = = 0.10; (2) f=0.10, » = 0.01 and
(3)f—101'= .10 and M =2,

EYe) 0

to the results, “recently obtained by Gupta &
Gupta,l3
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