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The problems of unsteady flow of a viscous incompressibie conducting fluid containing a dilute suspen- 
sion of small inert spherical particles in cylinders with circular and sectoriai cross-sections, in the pfesence of 
a radial magnetic field, have been discussed. The analysis applies to flows with pressure gradients whichare 
arbitrary functions of time. Explicit expressions for the exact velocities of the fluid and that of the particles are . 
obtained by using the methods of operational calculus-the Laplace transform, the finite Hankei transforms 
etc. Numerical results have been obtained for the developing flow due to a constant pressure gradient, when 
the flow is taking place in a coaxial circular cylinder. The effects of mass concentration and relaxation time 
of particles and the magnetic field on the velocities have also been discussed. 

The study of MHD flow problem is important pressure gradient, Gupta & Gupta1zA13 have studi- 
because the behaviour of the conducting fluid is ed the flow of the dusty gas under the influence of 
considerably changed in the presence of magnetic an arbitrary time varying pressure gradient in a 
field and many new phenomena are observed. rectangular channel in circular cylinder and 
Gold1 has obtained an exact solution of steady in a cylinder whose cross-sectionis a sector of a 
one-dime~sional flow of an incompressible vis- circle respectively. 
cous, electrically conducting fluid through a cir- 
cular cylinder in the presence of an applied (trans- 
verse) uniform magnetic field. Singh & Rizviz 
have investigated the impulsive motion of a vis- 
cous liquid contained between two concentric 
circular cylinders in the presence of a radial mag- 

3 

netic 'field [ (Hlr)  i ] .  Siagh3 has also discussed the 
same problem in the presence of an axial magne- 
tic field H .  

The problems of flow of fluid embedded with 
particles in the presence of magnetic field become 
more complex but not intractable, Yang & 
Healyl4 have studied the flow ;induced in an 
incompressible fluid embedded with particles by 
an infinite flat plate set into motion in its plane by 
oscillation and impulse in the presence of a 
transverse magnetic field, neglecting the electro- 
magnetic induced effect. 

" In recent years, the problems of fluid flow em- The present paper is a generalization of the 
bedded with particles have gained increased atten- work of Gupta & Guptal3. In this paper, the 
tion of mathematicians and engineers in view of authors have studied some of the problems of 
their applications in a wide vatiety of engineering flow of a viscous electrically conducting fluid 
situations including environmental pollution, corn- containing a dilute suspension of small inert 
bustion fluidization, and more recently blood flow spherical particles in cylinders with non-conducting 
etc. It is due to this reason a number of studies of walls, in the presence of a radial magnetic field. 
flow of a fluid embedded with particles4-14 have The flow has been considered in (i) a circular cy- 
appeared in literature. Rao1° has discussed the flow linder, (i i)  an annulus bounded by two coaxial 
of a dusty gas in a circular cylinder under the influ- circular cylinders, (iii) a cylinder ,whose cross- 
ence of an exponentially time varyidg pressure gradi- section is a sector of a circle and (iv) a cylinder 
ent. Singh & Pathakll have considered the flow of whose cross-sectionis an annular sector. It is the 
the dusty gas in a tube with sector af a circle as purpose of this paper to develop the general time 
cross-section under the influence of exponential depend,ent flow model 'and to obtain explicit 
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E Q U A T I O N S  O F  M O T I O N  

expressions for both the fluid and particles velo- In the present investigation, it is assumed that the 
cities, when the pressure gradient is an arbitrary effects of the induced magnetic field and electric 
function of time, in exact form. The changes in field produced by the motion of the electrically 
velocity profiles of the fluid and particles with time, conducting fluid are negligible and no external 
for a constant pressure gradient, have been drawn force field is applied. With these assumptions the 
graphically when the flow is taking place through + -+ 
the annulus. magnetic term J x B in Eq. (1) is given by 

B02 a, -t In the present investigation, it is assumed that 
JX 2 = - 

the cylinders are of infinite length and the flow is RZ U.  (7) 
considered along z-axis, which concides with where B0 ( = peHO) is electro-rnagnetic induction, 
the axis of the cylinder. The appropriate equations, pe and ae are the magnetic permeability and 
which assume Stokes drag law, are the well-known the conductivity of the fluid respectively. 
momentum equations for the fluid and particlesa. 
These equations after introducing the electro- In the present investigation the velocity compo- 

nents of the fluid in the radial, tangential and axial magnetic force, in cylindrical polar coordinates 
are directio~l (R,  8, z) are 

+ UR = O, uo = O, Uz = U, (R, e, t) 
a u 3 
- -  1 3 

- v p + v v 2 u  + and those for the particles are , 
'3T - - P 

KN, 3 3 1 3 3 VR = 0, vg = 0, v, = v, (r, 8, t). 

i-7- ( - ) - P ( J  B, Introducing the following non-dimensional quan- 
(1) titie's 

3 3 

where u and v are velocity vectors of the fluid and 
particles respectively, m is the mass of a particle, No 
the number density of the particles which is 
constant throughout the motion, K the Stokes 
resistance coefficient, T the time, p the pressure, 

the kinematic viscosity, the density of the 
3  3 

fluid, J and B are given by Mexwell's equations 
and Ohm's law, namely 

3 3 

cull H = 4 nJ (3) 
3  

div B = 0 
+ 

curl E = 0 
+ 3 3  

( 5 )  
3  

J =  U,[E-!--(UX B) (6) 

u = UU,/V, v = av,/v. z' = z/a, r = B/a 
p' = pa2/ pv2, t = Tvla.2, the equations (1) and (2) 
in view of (7) become 

and 

3v - =  
a t  

7 '(u- v), 

where f = Nomlp is the mass concentration of par- 
ticles, T = (m/K)/(a2/v) is the dimensionless relaxa- 
tion time of particles, j3 = f / ~  = NoKaz/p~, T' = I / T  
and M = (a, Boz/p)t is the Hartmann number. 

Using the above fundamental equations the 
authors have solved some basic problems of axially 
symmetric motion in the following sections. 

S O L U T I O N  O F  T H E  P R O B L E M S  
/ 

(i) Circular Cylinder M2 
Let us consider the motion of the conducting a t  

fluid in a circular cylinder of radius a. For the and 
present geometry, due to mi-symmetry the velo- 
cities are independent of 8. Therefore, the 2 = (u-u), 
Eqs. (8) and (9) governing the motion, reduced to ;) t 

(11) 
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where ep'/azr= -f(t) , is an arbitrary function where 
of time 1. Sl,M(pi) is the Lommel function, Erdelyils. 

To solve the problem, we have the Eqs. to obtain u, first inve* the Hankel trans. 
(lo) and with the of transfolm' form using the Hankel inversianformula, Tranterls, 
Therefore, it is neasqary to specify boundary to get 
conditions only for the fluid, whereas the initial 
conditions are required for the particles as well - 
as for the fluid. 

i=l  
The initial and boundary conditions for the 

problem are -- JM--I(P~) $1,  pi) 

Initial conditions : 
the summation being over the positive roots of 

u ( r ,  0 )  = 0 1 
f (12) 

the Eq. (18). 

v ( r ,  Q ) =  0 J FinJly invert the Laplace transform using the 
convolution theorem, we get Boundary conditions : 

u ( 1 ,  t ) = O  1 a, t 

k (13) ( 3  t) = 2 [ - ~ ) + ~ e x p a x ) a + i ~ ~  
u ( 0, t ) = finite J 

i= l  0 

Applying the Laplace transform to Eqs. (10) 
and (1 1) under the conditions (12) and then solving 
the tlansformed equations for and ; , we get 

- where 

where 5, i and T(s)  are the Laplace transforms Substitute the value of G from Eq. (20) in (15) a& 
the respective expressions and 8 is the Parameter thep invert the Laplace transform, to get the ex- 

\ of the transformation. The boundary conditions pression for the velocity of the particles 
(13) transformed to - 

Now applying the finite Hankel transform de- 
fined by { & - P i  -- P 

Pi(ai - L I Z )  
1 

g ( P i ,  s ) = f  u ( r , s ) r J N ( P i r ) d r ,  
o (17) (ii) Annulti8 

where p5 is a positive root of the equation 

J M ( P ~ )  = 0, (18) 

to Eq. (14) and on using the transformed boundary 
conditions (l6), 

we get 

Here we shall discuss the same problem when 
the flow is taking place in the annular space bet- 
ween two concentric circular cylinders of radii 
a and b (a<b). For the present geometry, the 
equations to represent the motion are (10) and 
(1 I), and the initial and boundary conditions are 

Initial conditions : 





\ 
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radii 8 = & a and the circle R =a (Fig. I). For where . . . * 

. the present geometry equation to represent the 
motion are (8) and (9) and the initial and boundary 2m + 1 

A m  = --- 
conditio~s are 2 a  (43) 

to the resulting equation for i under the trans- 
formed boundary conditions (41), to get 

- - = 
1 87 ' '-"" f ( s ) +  ($ + - -- SU ---- 

A, 
c :  

8r 
- - - -- 

7' + U. (44) 

Now proceeding exactly on similar lides as in 
'the first problem we obtain the expressions for 

. 

the velocities of fluid and particles as 

* * l Jg-1 (ki)sS~yq( t t )  
I 

m=O i=l 

Fig. 1-Geometry of cross-section and coordinate system X [/jf(t-)/ h 1 + ~ ' b x ~ h i x ) - i ~ ~ + ~ ' ) e r ~ ( y 2 ~ )  ] 
(Case 3). 0 

* I Jq fki r) cos A m  8 
Initial conditions : 

u ( r , 8 ,  0 )  = 0 . 1  
k 

u ( r , 8 , 0 ) = 0  J 
(38) 

u(r,e,t) = + > ,?y1) "f l Jq-1 (ti) Sl,p (80 
Am tA(yl- YZ) < X  

~ ( 1 ,  e , t )  = o 1 m = ~  g = i  , 
k 

u ( ~ , ,  8 ,  t )  = o j 
(39) 

u ( r ,  $:,cn,t)..i= 0 
' * *  

]In view of equalon (40) it is evident that the . 
flow is symmetrical about planes 8 -- 3, t h r e e  4(tg) 1 
the flow in the region 0 G 6 < a  isconsidered an4 I ~ ; ( ~ ~ ' ~ ~  1. * (46). 

accordingly the Eq. (40) changes to J 

u ( r ,  u , t ) = O  7 
where 

k (41) Y r = - -  a U = o f o r e = o  I 
Y2 

: [(+ + B + ti2) + { ( T t  + P + b2j2 
3 8 J 

To solve the problem, first apply the Laplace - 4 ~ ' h ~ ) l / ~ ] ,  (47) * 

transform to equations (8) and (9), and solve the F 

resulting equations for u and 5 and then apply 
the finite cosine transform defined by q2 = M2 + A m 2  (48) 

- a - and' ti is a positive root of the .equation , 

u ( r , m , s ) = /  u ( r , 8 , s ) c o s A m 8 d ~ ,  (42) 
O Jq(Ei) = 0, (49) 
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The summation:i= 1 to co in equations (45) and (46) 1 

being over -the positive roots of equation (49). 

(iv) Annular Sector 

In the last case, we have investibated the same 
problem when the flow is taking place in a cylin- 
der whose cross-section is an annular sector bound- 
ed by two radii 9= f a and the circles R=a 
and R=b, (a<b) as shown in Fig. 2. For the 
present problem equations (8) and (9) represent 
the motion and the initial and boundary conditions , F ~ ~ .  2g.Z--Geometv Emtion 1) and coordinate 
are system. 

Initial conditions : The. solution of the problem in view of initial 
~ ( r ,  0, 0) = 0 7 
\ (50) 

and boundary conditions(50) to (52) can be ob. 
h .  

v(r, 9, 0) = 0 J tained as in pievious problems (viz. with the help 

' Boundary conditions : of Laplace transform, finite cosine transform and 

u ( l , e , t ) = 0 7  the finite Hankel transform for the range 1 to 0). 
). 

u (0,9, t) = 0 J (51) The respective expressions for the velocity of fluid 

u (r, f a, t )  = 0 (52) and particles are 

where 

and qi is a positive root of the equation 
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S P E C I A L  C A S , E  - .  \ 

The expressions for u and v obtained in the above cussions, the flow of the conducting fluid in the 
sections are of general character and they are not coaxial cylinder when the flow is taking place 
restricted to any special form of the pressure gra- under the influence of a constant pressure 
dient. As an illustrative example of the main gradient C. Substitutingf(t)=Cinequations (35) 
results, we have considered in the following dis- and (36) and on simplifying further, we get 

and 

I 

J i { M i  M i - M i 1 M i i )  - 
U (Y, t) = " C qi2 {SM~ (qi) - J x 2  (qia)) 

i = l  

81 exp ( 8 2 6 )  - B2 ~ X P  (Bit) x [ l -  
B1 - BZ I .  

To express Eqs. (58) and (59) in further simpli- sion for a function f(r) over the range 1 to is 
fied form, we note that the Fourier-Bessel expan- given by, Tranterls 

where the summation being over the positive loots of equation (3 1) and the coefficients Ai are given by 

Expressing rM, r-Jf and r2 in terms of,Fourier- therein with the help of equation (33) and on 
Bessel expansion (60) and evaluating the integrds simplifying further it can be shown that 





GUPTA & ' A G A R ~ A ~  : Plow OT ) Condu~ting plaid in C~lhdexn ." 
e A r > =  P'" 

. .  C . [ . U ~ ~ ~ ~ - I )  
u (r, t )  = - . log o - r2 log r 

4 r2 (04 - 1 )  
- 

~ 2 '  hi u)[(qta2 - 4) J2 (qi) - 0 (qiz - 4) J; (cli c)& (qi r)  
X 

413' [ Jz2 (6)- - J2' (qi 0) I - a= 1 - ' .  
, , 

(BE f q+2) exP (82 t )  - ( 8 2  f qi3) exP (81 t )  x [ . . (68) 
81 -- 8 2  

. . -. . . . , . 
. 

and 
, . - r ' l .  

. log o - r2 log r - I 4 r2 (a4 - 1) - --* 

- - -  
. , 

J2 (qi o)[(qi2 o2 - 4)  J2 (qi) - a (qi* -- 4) $2 (qi2 o)]Bz (4i r )  - .rr C 
0 G3 Jz2 (qi) - J22 (qi) 

X 

. s i= l  - ' 
c - . . I  ; 

Bi exp ( 8 2  t )  - P2 ~ X P  (81 t )  , . 
81 - P2 

(69) 

a . . . * ,  - e 

" .  + respecEivdjC ' .xi = 
Equation$ (66) and (67) ~epresent tha velocities . ' 

< [ [ (91.') 12 dr, (70). - 
of the fluid and particle in the absence of magnetic i= I ' L 
field, . .  . -where - Ai2 -are the coefficients in the ieeneralilis- - 

NOW making use of Bessel's inequality, which ed Fourier's expansion of 4(qur) in terms of Bfl 
states that for an orthonormal set BM (qi r), whe- (qi r)  and (1, 0) is the interval of o@lionormdity. 
ther closed or not, we have Evidently the transient p W  Tin Eq. (63) satisfies 

~ T l < . r r C f :  JH (qi a )  [ JH (qd S ~ , M  (p i  0) - JM (9; 0 )  SI.M (qi) 1 Bg tqi r )  
J 

i= 1 
qi2 I: J a 2  (qi) - J.w2 (qi 0) 1 

- (81' + q12) ~ X P  (82'  t )   IS^' f 41)) exp (b' t )  

81' - j32' (71) 

where pi' and p.2' are the values of 81 & p2 at the smallest root q, of equation (31). 

Hence from equations (63) and (58), we have .. , 

ox - a2 
u (r, t )  2 rM 1-x-r2 x - o-M 

(Pi' + qr2) exp (j32' t )  - (62' f 912) exp (81' t )  

I 
X [ l -  

. . p' - B i  (72) 
i ?  

I . . * . .  . .i ' . .  -. I , '  . 
, 179 
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Following the same procedure the expression for the velocity of the particles is 

ON - 0 2  
v (r, t )?  I rM + r -Jf  -r2 X 

OM - O-M I 
x [ I -  81' exp (Pi t )  - Pi exp (81' t )  

81' - P2' 

Mean velocity 
JZv 1' v.r dB dr 

The dimensionless mean velocities are given 
,7* =o 1 

by (75) 1' r d8 dr 
/ 2 n  lo u.r d8 dr o 1 

o 1 Thus Eqs. (63) and (64) or (72) and (73) may be 

* = j 2  ' r d8 dr 
(74) integrated to find the mean velocities for s cons 

tant pressure gradient. The numerical results 
a 1 of the mean velocities are shown in Fig. 7. 

D I S C U S S I O N  

It is interesting to observe from Eqs. (45), (46) In the Figs. 3 to 6 ,  we have drawn the velocity 
and (531, (54)  that if we let the sectorial angle be profiles of the fluid and particles when flow takes 
2 a the resulting solutions do not correspond to place under the influence of a constant pressure - 
the flow through the circular cylinder and through gradient C .through the annulus. Fig. 3 shows 
the annulus. It is because in these cases we shall the velocity profiles of the fluid and particles in 
have a semi-diametral wall in the cylinder extend- the absence of magnetic field, while Figs. 4 to 6 
ing along the length of the cylinder and joining represent the velocity profiles for values of M 
the axis with one of the generators of the circu- as indicated in figures. From these figures it is 
l a  boundary. observed that the fluid moves faster than the parti- 

cles and as time t increases the velooities approach 

r 
Pig. 3-Ve10City profile of fluid and particles for values of Fig. 4-VelocitY profile of fluidsnd panicles values oft  

t indicated when f  = 0.1, 7 = 0.1 and M =  0  indicatedwhen f = 0 . 1 , 7 = 0 . 1  a s d Y = I .  
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the steady states. With increase in the magnetic reases. For larger values of M the velocity pro- 
field the velocities of the fluid and particles dec- files become more flattened. 

Fig. 5-vel~ity profile of fluid and particles for values of t Fig. 6-Velocity profile of fluid and partioles for values o f t  
indicated when f = 0.1,  7 = 0.1 and M = 2. indicatedwhen f = 0.1, T = 0.1 and .M=3. 

In the absence of magnetic field i.e., when M-tO to the results, recently obtained by Gupta & 
the results (21), (23) and (45), (46) correspond7 Gupta.18 

Fig. 7 shows some typical examples of the re- 0.07 

sults obtained. It is observed from this figure o m .  
that the fluid-particles velocity difference is small 

0.05 - 
when T is small and large when T is large. At . 
low particle concentration, the fluid moves the 0". 

particles with it at all times when T is small. But 003 .  
with large r,  the fluid flow is unaffected, but it 

002 results in large fluid-particle velocity diflerence. 
0.0 I . Large particle concentrations result in lower 

particle and fluid acceleration. For larger O J  

A C K N O W L E D G E M E N T  

- ,,*- 

The authors are highly grateful to the worthy refree for the valuable suggestions. 

T,  the fluid starts accelerating sooner but the parti- odo~ 061 0.1 K) ib 
cles start later, and the time to reach steady flow t 

is also increased. Finally the fluid and the parti- Fig. 7-Mean velocity of the fluid and particles forTi&#= 
' cles accelerate to the same final steady state. 0.10, T = 0.10; (2) f = 0.10, T = 0.01 anti 

(3) f = 1 . 0 ,  T = 0.10 and M = 2 .  
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