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The problem of temperature distribuition and heat transfer for laminar flow through two parallel porous disks,
has been investigated when the flow is entirely due to injection or suction at the two disks. Viscous dissipation.
terms have been included in the energy equation and the uniform injection/suction velocities at the two disks, are
assumed to be small. The boundaries are maintained at constant temperatures. The variation of temperature and
Nusselt numbers at the two disks, is shown graphically, for various values of the injection/suction velocities.

The flow and heat transfer between two parallel disks, whether porous or non-porous, are of considerable
practical interest in the design of thrust bearings, radial diffusers etc. Flow through porous boundaries with
uniform suction or injection velocities, has been examined by various authors, namely Bermanl, Sellars?,

and Yuan3, Laminar flow between two parallel porous disks has been investigated by Elkouht with uni-
form small suction or injection at the boundaries. Narayana and Rudraiahs studied the steady axisymmetric
flow of a viscous incompressible fluid between two coaxial disks, one rotating and the other stationary,
with uniform suction at the stationary disk. Regular perturbation technique has been adopted for small
suction Reynolds number and the equations are numerically solved for an arbitrary suction Reynolds number.
Viscous incompressible flow between two porous parallel rotating disks has been examined by Gaur for small
Reynolds number, defined in terms.of the angular veiocities of the disks. The problem of radial flow of a
viscous incompressible fluid between two stationary uniformly porous disks has been investigated by Terrill
and Cornish? The solution for small as well as large suction Reynolds numbers, has been obtained.

Inman® has discussed the effect of variation of the cross flow velocity on the temperature distribution
and heat transfer for flow in an annulus with porous walls, with the. assumption that the rate -of injection
of the fluid at one boundary is equdl to the rate of suction of the fluid at the other. The effect of suction
in the temperature distribution and heat transfer in plane couette flow-and laminar flow in- a circular pipe has
been investigated by Verma and Bansal?, -while the problem of unsteady temperature distribution for laminar
flowina porous straight channel, has been studied by Gaur?®,

In the present investigation, we have obtained the solution of the energy equation, in cylinderical polar

* ‘co-ordinates, when viscous dissipation has been accounted for. The velocity components have been taken

from reference [7], when the suction or injection velocities at the disks are small and equal. Regular pertur-

bation technique is used to obtam the temperature distribution when the disks are mamtamed at ‘constant
temperatures.

The present investigation can be made use of in porous bearings and self-impregnated bearings, used in
defence equipments. . The practical application that-can be envisaged for this problem is where two porous
disks are separated by a thin film of inert gas asin a gyro type of instrumentation. The velocity of gas being

small, Mach no. effects can be neglected. And as is assumed in the numerical work done, the Prandtl number
is of the order of unity for gases. '

PROBLEM-FORMULATION

_ The fluid is contained between two infinite parallel porous disks, situated at z=—dand z=--d respec-
tively. The flow is due to small uniform injection or suction at the disks. The axisymmetric form of the
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energy equation in cylindrical p'olar co-ordinates (r,0 ,z) is _ RNl T
\ 2T 1 ’E)T ) ‘ S
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where 1 and w are the velocities in the r and z directions respectlvely and the other notations have their
usual meanings. The viscous dissipation functlon ¢ is given by

=B (3 (B g

The boundary conditions, are o
2=—d, T=T

and |

3 : Z . "'l" d) T T 2
where 71 and T2 are some constant temperatures o

Introducing the following non-dlmenmonal quaiitities
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g equation(l)us1ng(2) takes the form ,
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here the bars, from the non-dnnenmonal quanutles ha,ve beendropped

P, = P'IS?. , is the Pra.ndtl number and E = P Cp’zsz—Tl) » is the Eckert number.

The boundarycondmons now become o

. ST : z-—-——I T=0 .'1 J S
L » z-—‘-‘——l—l r=1 , |
METHOD OF SOLUTION

For the case of uniform mjectlon at both the dlSkS, the velocity- components wand uare gwm by (Ref )]

w=h(z) 5 V(Z3 3Z)+ 560

(7 — 21z5 + 3928 — 192) + 0 (V)3
"‘j"’#.g—f—L Ky - ' )

.- under the a3sumptmn tha.t the umform mjectlon velocnty V,is small Prime denotes diﬂ‘egénfiatiqn with
. respect to z, : ’ i
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Substituting (7) in (3), we have

— I T pp T 1 (BZT + 1 +————-.)+E(3h'z+ r2h"2) ®

2 ar Y N ST B" z2
‘ Equati’on ®) readiiy suggestk‘s'that T should be of the form 3 o R N
T=rT@+ToG " ©)

Substituting (9) in (8) and comparing the coefficients of r2 and r° from the two sides of the equation, we have

— W Ty +hT =y + £ 1)
. B Pr 4 . N i
and : . ‘f‘i“"i L ~
: h‘T'b = ‘pl"‘ (4T. + T°) +3Eh2 = - —_ oan
. A ; o
 The B. C's are
| Z:—l,'Tz———:O,To—_:O fos
z=+41,T,=0,T,=1 } (12
Let . .
- Ty =Topg +V Tyt + V2Tge + . .. } . .,k‘:‘ .(13)
o To To,o +.V Toa + p2 To,2 —l— {
‘ _ \ i.
and h_.Vh,+Vzh,+ ‘

Substituting (13) in (10) to (1 2) and comparing the coeﬁiclems of the various powers of V, we obtam the
following two sets of differential equations.

I Set .
T"20.=0 . L. [ R %

— h" Tz,o + h Ty ==w~—1—,1——3" (AN
. ""thZsl—"k Tz’i+thzso+h2T2,o-‘—-}——T”2,2+ h"2

P,
 with the boundary conditions

———1 Tz,e—Tz,l —-Tz,z—-o }
, - 2=+ L De=Tu=Twn=0 f
4 Ty + T”OQQ =0

Il - R T AL

a9

b T o0 = .J_:., (4.Ta1 + T"0).
roo. _—

I

0’2) + 3Eb'1% MR
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with the boundary conditions ‘
| z=wat; T =Ton =Toe=0 -1 -~ .
§ 3 o0 = o1 =Toz =9 j' o S asy
2 = + '1'; Tos0 =:l, To1 = TO’2 =0 C e : 3

o A .
As h and h; are already known from (7), solving, (14) and then (15), we are able to get the values of T, and
T, the substitution of which n (9), gives S ' '

T=r? pr' va(l z‘)—l———(1+z)+ VP' (1 zﬁ) <9z—~23)+

2 (1 — g2y | EPr 37,3 4 P — 52723 5__ 5,7
+ve(l ,z)[40 (113 — 3z+8z)+__..___.__”20x360 (6132 52728 + 17528 —527) -+

. D
; .

_.._.__}.2____._ P 3 5 . ] o ] YL u'\_
Tt e 5% (13912 99‘}92 + 252575 — 17527 | T
which is correct upto the terms of thé order of V2‘ R

The rate of heat tra.nsfer is expressed in terms of Nusselt number which in terms of the dimensional
quantities, is given by

N

2d Q*
Nu= — = —— ‘
T ERm—1 . L
/ —, :
where
* = _.-.—_—--——~—
0 - (r2 ) f (217 r q) dr,
and S T | h T T T T v‘;"\\;% .
= g oT ,
q T
where the meanings of O* and g are evident from the expressions and rg, is the distance of some given point
from the centre of either disk. Now calculating O* for z= -———d and z= :}— d Nusselt numbers for the

lower and the upper disks can separately be obtamed

Usmg the. non-d;mensmnal quantltles, as defined in (4) and dropping bars, the Nusselt number at the
lower disk [(Nu)_1) and the Nussel{ number at the upper disk [(Nu)+1] are gwen by

Nu)_1 = — —4— EP, V2 ro2 ()\2 —I— l)—— -
1 21 T 97
.__2 — —— 2 Pl S . 2
(4 5Vp,+ V( EP, — 35><45 Pyt s be)}
21 1 "9'7 e\
wo (=2 p e L I
+ 10 P, — 35><45 P’ 76300 )}

where A = r/rg. o ce
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. NUMERICAL DISCUSSION ) T o
Temperature profiles for P, = 1.0, E=0.01 and r = 100 -have been drawn for various values of
V(Flg 1) For ¥=0.2, that is, when. there is sma.ll -m_]ectlon at both the disks, coohng effect 1s observed

Fig. I—TcmperatureproﬁlesforE—O 0L, Pr=1.0, L
“r==100.and for values of ¥ indicated. ' '
near the lower disk. Increase in the injection velocity (V'=0.4) results i in the increase in temperature at both
the disks. However, it can be seen that the maximum value of the temperature is located in the upper
half of the region for injection. Instead for negative ¥, that is suction at both the disks, a phenomenon
opposite to that of injection is observed. It is mterestmg to note that for equal snctron or mjectxon the .
temperature in the central region remains unaltered.”

Fig. 2 shows the variation of the Nusselt number at the lower disk against A, for the same fixed values
of P,, E and r. It is observed that (Nu)_l remains negatxve for suction as well as injection. Increase in the

40 0 -5 20  -2%

(Nu)oy

Fig. 2—~Nusselt number at the lower disk for £=0.01,
~ Py=1.0, r;==10and Tor values of ¥ indicated.
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uniform injection velocny at the lower disk results in the decrease of this Nusselt number as We move away
from the centre of the disk. However, this decrease is faster in case of suction.

The variation of Nusselt number at the upper disk against A, for the same fixed values of E, P, and ro,
has been depicted in Fig. 3. It is seen that for small injection (Nu).-1 remains negative near the centre of the
disk but changes sign and becomes positive as we move away from the centre. With the increase in the
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Fig. 3—Nusselt number at the upper disk for E=0.01,
Py-1.0, ry=10 and for values of ¥ indicated.

injection velocity, the Nusselt number also increases sharply and becomes 1hroughom positive. However,
increase in the suction velocity at the upper disk decreases the Nusselt number near ‘the centre of the disk,
whileincrease is observed as we proceed away from the centre.
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