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The influence of electrode geometry for the MHD Couette flow in the presence of the Hall current and heat
transfer of a conducting liquid in a rotating system has been studied.

The flow between two parallel plates with one plate moving (Couette flow) is of general interest. Pail, .
Lehnert? and Bleviss? have considered the magnetohydrodynamic Couette flow and heat transfer. Sherman
. and Sutton# extended this problem to include the influence of the loading factor. Jana, Datta and Mazumder5
have studied the hydromagnetic Couette flow in a’ rotating frame of reference. However, in an ionized. gas,
when the strength of the magnetic field is véry strong, one cannot neglect the-effects of Hall current,

The object of the present study is to extend the work of Jana, Datta and Mazumder® by including both
the effects of Hall current as-in the works of Sato®, * Yaminishi? and Sherman and Sutton¢ and the loading
factor as in Sherman and Sutton4, but the d1scuss1on wdl be 11m1ted to the mﬂuence of the loading factor K
only. : :

In general, the open or short Cll‘Clllted methods dependlng on K =1 or 0 are used to analyse generators,
pumps and metres in flow problems and form the groundwork for the MHD generator analysm,

BASIC EQUATIONS AND ITS SOLUTIONS

Consider the steady Couette flow of an electrically conducting fluid between two infinite parallel plates
when the fluid and the plates rotate with an angular velocity 2 in unison about an axis normal to the plates.
A uniform magnetic flux By acts ‘normal to the plates parallel to the z-axisi.e., itis assymed to be generated by
either an air-core solenoid or an electromagnet with a saturated iron core. The xy-plane coincides with the
stationary plate and the plate z = d moves with a uniform velocity Uy in the x-direction. Agsuming the
flow quantities are mdependent of x ahd y, the equations of motion and energy are given by |
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where u*, v, J,*2, J,*2 arethe x, y components of the velotity of the fluid v and the current density J res-
pectively, v the kinematic co-efficient of viscosity, p the fluid density, « the thermal diffusivity, u the
viscosity, o the electrical] conductivity of the fluid and ¢, the speclﬁc heat at constant pressure.

The current density components follow from the mod1ﬁed Ohm’s law (See Cow11ng3), ignoring the
electron pressure and the ion slip,

- - - 1 T : . et
;J=O'(E+V‘><-B—"TJ><B)‘~, ' : : (4)
where nis the number density of electrons, —e the electron charge, B (B*,, B*,, By)the magnetlc 1nduct1on
vector and E {E* = C1, E,* = C,, Ez (2)} the electric field relative to the rotating frame.
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It follows from equation (4),

where . S :
. eBy T .
meBo )

Equations (1) and (2) with the values of J.* and Jy* subst1tuted from equatmns (5) and (6) assume the’
following forms : ,

QLU M2 o -
! ey A2V M2 f L o '
EU~(W-+1+m2[.&~V+m@y )
in terms of the non-dlmensmna.l variables defined by
n = zld, (U, ¥, 0) = W*, v*, 0)/Us 7

{Es, Eyy E, ()} = (B Ey* E)/Uo Bo
M2 (Hartmann numbet) = Bg2 d2 (o/pv) - . =
E (Ekman number) = 2Qd2/» \ (10)
(bey bys 1) = (Be*, B,*, BBy |
(]a;, ]y, 0) (Jx*, Jy*, O)/UUO By
R,, (magnetic Reynolds number) = o p, Ugd

where Ko is the magnetlc permeability, -

Equations (7) a.nd (8) are to be solved subject to the boundary conditions :

U=V=0 atn=0and U=17¥=0 aty=1 S ay

 For simplicity, it is assumed E;=~0and Eﬂ =K (consta.nt), the: loading factor. Physically there is a différ- .

ent potent1a1 over each electrode and the electrodes are infinitely far apart so that there are no variations in the
" x-direction and that there is a constant potential over each electrode, supposed to be made of materials of in-

‘ﬁmte electrical conductivity and the electrodes are 1nﬁn1te1y far apart so that there are no variations in the
y-direction. : ‘

It should be noted that E, () can Bé“ca'lculated after the solutions for flow velocity and induced magnetic
field are obtained. Further, it must be noted that when E; is a function of 7, this implies that the lines of
constant potential in the plane of the electrodes are curved. Accordingly, the finely segmented electrodes

mentioned earlier must be consxdered curved ‘the curvature being calculable once the:solution has been
‘derived.

Under these assumptions and in terms of ¢ = U - i V, equatidns (8A-9).can be written as
N

Lt fwti = —akatm (12
The boundary conditions of equation {an becbme : o -
q-Oatq.«Oandq-.,latq_l o))
where : - ; :
i M2/'l' + m2, ,80 = M2 ml + m - (14
- Solving equation (12), su’bject to equation (13), we get _
sinh(hyy) -~ M2K Slnh (. m) + sinh {f (I—n)) _ ~
sinh (A1) (I + m2) h2 (4 m){ ~ . sinh (kl) } (15\), :

144



VIDYANIDHL, ef. al. : MHD Couette ﬁgw“ag&d‘ Heatﬁfa.nsfer in a rotating system

where . o :
' hl=0¢+‘iﬂ, \‘\ s .
a%[\/ao2 +».(E+,Bo)2+ao]1/?~ ST
Lo 2 S "(16)’
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RESULTS AN/D DISCUSSION

: Smce welare prunanly interested to bring the influence of the. loadmg factor K, we have taken the other
parameters as fixed. Moreover, their influence on the flow preblems has already been reported in literature by
Jana, Datta and Mazumder5 and Satoﬁ etc Thrgughout the dmcussmn we have ta.ken M2=T7 m=1,

E=3and K=0, 0.5 and 1.0. N ‘

Separatmg equa.tlon (15) into’ rea14and imaginary parts, the expresswns for the pnmary veloclty U and
the secondary velocity ¥ have been obtained. Since the expressions are too unwieldy, their graphical solutions
are presented in Figs. 1-2. It is observed from these two figures that as the loading parameter K increases,
both the primary and secondary velocifies increase at any point of the fluid in the channel. Further, Fig. 2
shows that there is a flow reversal for the secondary flow for K = 1 0. The critical value at whwh sucha
reversal takes place is estimated to be K = 0.82612 for M2=T.

1 025,
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) \ K20
:"» 0 1' : :q(;; ’ gt B 71:.' *”i( : DS v 4— o : - . - v-t .
0. 02 . 04 , _05 08 10 025 .
Fig. 1—Vel£)city of the primary flow. - . - Fig., 2—Velocity of the secondary flow, -
The non-dirhensional shear stress at the plate 4 = 1 i is gwen by "/ ‘ .
- Ve xp [ h(26) 2
"= “fcosh (2a) — cos @B cos ¢ “) + cos ( A+
o . ¥
+ 2a2 (b2 4+ ¢2) (cosh ¢ — cos 'ﬂ)2 — 4 gcsinh o sin B ] o . (17
- where R - ‘
‘ a=aK /[@20"4 (E + Bo)? ] b ="aq + m (E -|- /30)
‘ . 7(18)

- C—E-l-ﬁo—-mao ‘“‘“‘"
__ Thevalues of 7 from the above equation have been entered in Table 1. Ttis concluded that the resultant
- shear stress mcrea.ses with an increase in the loading factor.” :

o148



~ |

" Der. Sct. 1., VoL. 30, JuLy 1980

The current density components are g1ven by
. Ja+ijy = (4 = K) (m — DI+ m2)
and the ma.gneuc induction vector components follow from
by 'i_—lb"—'Rm ‘I(Jb‘l‘l]y)d"l"“ C
~where C can be chosen to maintain by = by, =0 at™ ?7 =Tas m the soleno1d model.

PANEIENCES R

Carrying out the 1ntegratlon yields the followmg result ;s ‘
by +-ibe _ (m—1). [ cosh (h, 7) — cosh (hl) MK (LA im)

., Rn 1 ++ me2 hsinchhp '7 (1 + m2) M?
" Jeosh (hyn) — cosh () — cosh [l (1 — D]+ 1. o _
’ /{ h sinh (1) e ”’ =+ 1} K(n 1)] @D

From Figs. 3-4, showing the current densfcy and magnetic ﬁeld components respecuvely,it is concluded
as K increases (i) both j, and b, decrease and (ii) both j, and b, increase. Unless the magneﬁc Reynolds
number Ry, is of the order of umty or larger, itcan be seen that bx w111 be small compared to the apphed ﬁeld

05-

bx/Rm , by/Rm*

S

) YK=0\\ .
- ~
05y , S~

-=== by/Rey

.. - «0-25- .
Fig. 3f-Current density components. ‘ Fig. 4—Magnetic field components. '
: HEAT TRANSFER
We ha.ve to solve the energy equation (3) subject to the boundary conditions for T as -
- T=T atz=0and T=T; atz=d (22)

where To and T (T1 > To) denote the umform temperatures of the statlona.ry and the moving plates
respectively.

A

Introduging .- I .
o) = ———};~§3 R R TIEE E
PrPrandtl mumber) — wix o
. - Ec (Eckert number). =: UBZICp {1 — To) ’
in equatlon (3), we get on using equations (5) and (6) -
“@fj,,ﬁf =—Pr Ee [—;% - + aw{ 29—K@++K ” 24)
- where o -~ ‘ , -
| q«—U-—zV T T e
The boundary cond1t1ons inequation (22) become C . o »
0(0) =0, (y=1.- - e ce (29
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“Using the equa.tlon (25), the equatlon (24) has been solved. The expre@swn for § is quite lengthy and
hence we present a graphical solution in Fig. 5 for fixed values of M2, m, E mentioned earlier and for

= 0.7, Ec = 0.5. It shows that close to the plate n = 0 the temperature increases as K i increases while it
decreases close to 7= 1as Ki increases., : :

101

cod 02 04 _ 06 08 10
Fig. S—Temperature,distribution.

The rate.of heat transfer at the plate, n = 1lis gmen,bx e

1 Pr Ec .
h=1 " cosh (%) — cos @B} [2aﬁBDLH;;—{-4a,SBD(aA1+,8A)+2aoaBBLH2—F

—!—4a0aﬂB(ﬂA2———aA1)-]—ao(N+ 0) {cosh(2a) —cos-(2ﬁ)} 2a0 H (ZaﬁS-l-aoR)-]—

v Hz(QaBR-—aoS)+ 2 Es(2afKP—aod) + o E4(2¢BA+¢0KP)

{GBDL—}—agHBL—!— (N+Q) {cosh(2a)-——cos(2ﬁ)f+ 24 (2aﬁS+aoR)

‘{'cosh(Qa)—-'—cos(QB)l}} -+ GBDN~[—'a0HBN-—- 2Da£ Qap KP—ao A)

{ “cosh (’2a)‘+ }cos( 28) } ] - i} o (6
where - : o ‘ C
B=_40‘_;73_2_',. = a? + B2, L=(15—‘-ab)2+a2c2

N=a(¥?+c2), Q=K —2abK,S=ac(l—K)
R=ab(l+K)— K——a2(b2+c2), =ac, A= Kab——az(b2+c2)

G = B2 cosh (24) — a2 cos (26), H = P2 cosh (2a) +- a2 cos (28),

Hy = B sinh (2¢) 4 a sin'(28), 41 = C cosh a sin g - PSmh o COS B,

Az = C sinh x cos B — P cosh a sin B,

H, = B sinh (20) — a sin (2B), Hy = « sinh (2a) + ﬁ’ in (2/3),

E3 = a sinh « cos B + B cosh a sin B,

E, = a cosh « sin B — B sinh a cos B, v . o R R

C=ab—a2( + c2), ‘ - o ' T @D

«
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It is seen from equation (26) that whén Ec¢ = Ec*, where
cosh (2a¢) — cos (28)

, Pr Ec*:

-+ 4aBaOB(BA2——aA1) + ao(N+ Q){ cosh (2a)-—cos(2f3)}

2a0
D2

w2 2“0 H, (2aﬁR—-a0S)—l— 4“0 Ea(zaﬁPK-—aoA)+ 4“"

_,{GBDL_ +aHBL + %’ao (NJ}Q) {co'sh(za) _qoé;(z/s) }

E,(20B A+ agKP) —

2(!(;

(206 BS+¢0R)

{cosh(2a)——cos (2,9)}}+GBDN~+ agHBN— ﬂ-(zaﬁKp._ aoA)

{ cosh’(2a)v — cos (25) }

then there is no flow of heat either from the plate to the fluid or from the fluid to the plate.
Further, for. Ec<< Ec¥, the heat ﬂows from the upper plate to the fluid, while it flows from the fluid to the

" upper plate for Ec>FEc*.

—ZaBBDLH3+4aBBD(aA1+BA2)+2aﬁagBLH2+

Hi(2aBS+oR) 4+

(28)

The rate of heat transfer at the moving plate and the critical Eckert number have been entered in Tables
2 and 3 respectively for fixed values of M2, m, E, Pr and Ec mentionedearlier. AsK 1ncreases it is concluded
that both the rate of heat tt a.nsfer at the moving pIate and the crmcal Eckert number increase.

) Tastk 1
RESULTANT SHEAR STRESS 7 AT THE MOVING PLATE
K ~ 0 . - 0.5 1.0 .
T 2.669499 S ) . 2.763505 3.114170
- TABLE 2. il
RATE OF HEAT TRANSFER '/t AT THE MOVING PLATE B
K .0 ‘ T s 1.0
h 0.369755 - 0.755465 ~0.801731
; TABLE 3
CRITIGAL™ ECKERT ‘NUMBER Ec*
K ‘0 v 0.5 1.0
Ec* 0.793300 - T . 2.044401 2.521352

ACKNOWLEDGEMENT

The authors wish to thank the referee f‘or ‘his suggestlons for the improvement of the paper.

Leunert, O. B., Ark. Fys.,

0D NN

148;

REFERBNCES

Pa1, S.T., ‘Magnetogasdynamics and Plasma Dynamlcs (Sprmger-Verlag), 1962

5 (1952), 69,

Breviss, Z. O., J. Aero/Space Sci., 25 (1958), 601,
SHERMAN, A. & SurTON, G. W,

‘Magnetohydrodynamlcs (Evanston, Illmms), 1961, p. 173{
Jana, R. N., Datra, N. & MAZUMDER, B. 8., J. Phys., Soc. Japan, 42 (1977), 1034

,Sato, H., J. Phys. Soc. Japan, 16 (1961), 1427. :

Yamimnisut, T., J.. Phys. Soc. Japan, 5 (1962), 29.
CowLiNG, T. G., ‘Magnetohydrodynamics’

(Interscience Publlshers Inc New York), 1957 p. 101,



