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This paper studies sonic waves in dissociating gases under the influence of a magnetic field, The conductivity
of the medium has been taken to be finite since the temperature range considered is 1000°K to 7000°K. Since
bodies travelling with hypersonic velocities meet ‘with the phenomena of dissociation, this paper has a direct
‘relevance to defence problems.

Thomasl!, Nariboli & Secrest? and many other authors have made intensive investigations regarding
the propagation of sonic waves in ordinary as well as conducting gases. Recently, . Srinivasan & Ram?
studied the growth and decay behaviour of sonic waves in radiating gases. When projectiles travel with speed
of order 2 km/sec, regions adjacent to the body of the projectile meet with the phenomena of dissociation.
To simplify the analysis of dissociation, Lighthill4 introduced the concept of an ideal dissociating gas. In
the present work, we study the behaviour of sonic waves in a dissociating gas of Lighthill’s model under
a magnetic field. We consider the temperature range 1000°K to 7000°K in which dissociation is important
but electronic excitation energy and ionization energy are negligible’. . Accordingly, the conductivity of the
medium cannot be-taken to be infinite. In order to avoid the complexities that arise from the detailed com-.
position of air, we take only diatomic gases. As a result of the discussion that follows we obtain that small
disturbances produced in the ideal dissociating gas under a magnetic field travel with a velocity which is a
combination of the effective velocity of sound, Alfven velocity as well as a term having dimensions of velocity
and occurring on account of the finite conductivity of the medium. We have also shown that Alfven velocity
depends on the degree of dissociation and sonic waves rapidly terminate into a shock wave.

FORMULATION OF THE PROBLEM

Consider the diatomic gas mixture consisting of the same kind of molecules 42, composed of identical
atoms A. Suppose that, at temperature T and density p, a fractlon a of the original number of molecules
dlssocxatesmto atoms by thereaction

s K

r

-

‘where Ky and K, arereactionrateconstants.
p=(14+e¢)pRT, h=(44+a)RT+aD )
The equation of continuity duc\ to Lighthill4 can be written as .
4p DK, (1 + o) { T :
P + Ug, i = RITS2 {Pd(l""“)'exP "“"ZT)’T'Pa-z} (2)

o

where pg, Tq, Dand R arerespectively characteristic density, characteristic iemperature of dissociation,
dissociation energy per unit mass and gas constant for 4,. Although p, is a function of T its variation in
the temperature range under consideration is very small. Therefore, we take p; asconstantas thns as sumptlon
hardly affects the result.
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, ‘We consider the ﬂow of an ideal dissociating: gas of finite electrical conductlwty in the pre sence of a mag-
netic ﬁeld Using cartesian tensor notation m M‘K S. umts, the relevant equat:onsare°

l‘ o aP +U$PM+ Pth—‘O | o (3)

U; k ' ,
Pagt +el; Uw+?»+H Hau HH”J_O L @
?at +U Hnj""'H Uu‘;"’H U’ _’"H"jf—o , . (5)

. ) lz . i '
P gt +oUihi— gﬂ_'v‘p"=i@@.f -

o ) ‘c)t_ g
where R ‘ T A

e Ji=¢ijp Hp g o
and e;;; is the permutat‘on tensor.

‘The quantities U;, p, p, h and H; denote Iespectlvely the gas velocity components, pressure, densny,
enthalpy of the gas mixture and magnetic field components,.. . -

In view of the Eqris. (D and (2), Eqn. (6) can be written as

_:tiltp_'—.PU@' ‘BaU;' —PUinUi’j'*")’e]’)Ui,i+F(p,p,m)=—{;— (1)
where B S | | :
Fippa)= —gPRTDT—%{Sp (1+a>2} { pa(l—a)exp (._ _TTL);;M». }
M4+ a
')’e= 3

is the effective exponent of heat for the gas mlxture

- VELOCITY OF SONIC WAVE

Suppose that a surface X (¢) of a sonic wave, across ‘wluch‘ the flow parameters are continuous but
their derivatives of all order are discontinuous, moves with a velocity G. 'We further assume that across this
surface, the magnetic field and its second and higher order derivatives are continuous while its first order
derivative is discontinuous. Then, taking jumps of Eqns (2) to (6) and making use of the geometrical and
kmematlcal compatibility conditions of Thomas?, we get

. (Upn=G)[a,¢1m=0 : | (8)
(Un—G)L+pAin=0 - : ®

(Tn ni+Hs,n,_H§,~o . (10)
(Un—G) & —Hin X ; R ¢§))
P (Un—G) N U‘+GM-yopAn@—-a—§. =0 (12)

where [ ] indicatesthe disc“éntmuity in the quantity enclosed and v :
: : N)‘i“":‘/ [ Uia j] n;, [ = [pn' ],.ni s §7= [ Psi ] ng, -

fi""[Hbj]nj'.’ Un = W; B; B
n; being the components of the unit normal to the surface £ (¢). To determine the velocity of sonic wave,
we use Eqns. (10),(11) and (12) and the fact that A # 0. The relative velocity (G — Uy,) is then glven. by
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( .; 2 G (Hiz"“Hn,z)' 7310}_4@_&2_ |
(6T — g7, A -5 ooi =0 (13)

From (13) it follows that when the medlum ahead of X (¢) is at rest, the wave moves thh a velocity, G
given by

o _ vep  HE—H2  (E& C |
¢ = vpy BB (B )

' We therefore conclude that small distu1bances in a dissociating gaé in the presence of a magnetic field travel
with a velocity which is the combination of effective veloclty of sound, Alfven velocity, and a velocity vector
"'due to the finite conductivity of the medium.

Taking the magnetic pressure number g = H72L as constant throughout the medium, we obtain,
‘ - P
after a slight manipulation - - .
. - B2 [H; H; ;]
= = ; >0
N : P= % [p3]

Consequently, we get the relations \
. H ¢ = Bu : - 15)

282
) 42 = S - (16)

Ve .

where A is the Alfven velocity given by 42 = H and S is the sound velocity defined byt = YeP
P , P

" The relation (16) implies that Alfven velocity is dependent on the degree of dissociation and increases
(decreases) with its decreasing (increasing) degree. Taking the medium ahead of the surface z (t) at rest we
get, as aconsequence ofthe Equs. (9); (10), (13) and (15), -

_UtB)e _ 6, _(E -
V= Gp e £‘7(poa)f‘ R an

where we have taken

a? = G2 — Y@ H? —H,?
: B 3 . - B
BEHAVIOUR OF SONIC WAVES

Differentiating (1) with respect to x; and making use of compatibility condition, we obtain _
p=(1+a)RT L+ (1+a)Ro[T;]n a8
In order to derive the expressions governing the growth and decay behaviour of sonic waves, we differentiate

Eqns. (3) to (5) and (7) withrespect to x;. Using eompa.tlbxhty conditions of Thomas?, the Eqns. (18) and
the fact that U;=0 on X (¢), we get .

8
sf =2 + GT —{—2pAQ—~'p Tams : - (19)
’ SA . ‘ Lo S
P ,St =pGNm— o (20)
3 T hmaEAY
5 25, (H,‘—Hj)("’\i%i-2.QA) (21)
5 SR . -
_Stﬁ =27p QA+ G p—yepki 0 + pGX +ye pdA— (4L — B p) (22)
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" where £ is the mean curvature of Z’ ) and

A*Z{pD(1+a)2(2X~a2 )—3P(X—a2)—-Y}
B=pZ(Y-=-3X) o

T .
X = pg (1-a)exp (—e--;v)s-—pa?
. B N g N T T .
Y={D(1—ar—3 [{pn1—a)em (-3)F]
K,
Z= 3prs -

= [U@'ajk n; M

>

/ -—
b= [m‘k A

= [p,jlﬂ nj n

Takmg the time- derivative of Eqn. ( 17) and combmmg with (19) to (22) we get, the followmg set of Equatlons

E-Lueangetita e

. ’2‘?’—-% )."+P1A+ ’lpGﬁQl S P (24)
s PEaz T l’%&——”ﬂ% @)

] ,88’:' = (1'4;5) % it Py M+Qi E T ke {:j 26

where e S

iR -
pe 2(12@35\%} Qﬂ_(l-;/s _B)
Q= (GF—yphom \

The Eqns. (23) to (26) go vern thc growth and decay behavmur of sonic waves propagatmg in an 1dea1 dls-
soc:atmg gas in the presence of magnetic field.

We now consider a sonic surface. z (to) at time to. Ifs represents the dlstance measured from X (to)
in the direction of normal to the sutface Z (¢), thens =G (t — to) and scalars A, pu, { and £; may be
regarded asfunctions of 5. Therefore, wecanwrite. - _

) a8 d:
G’ = G —
N - ) - i d
| | St s - ﬁz 3 @7

-8t ds? &
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In view of the Eqn @M, the Eqgns. (23) to (26) can be written in the followmg form

d 1
Ti—————czntPH '“30 (28)
ax -
YT +PA+ +B Q : ' (29)
it _ % B  (+pea
ds G loa® °F +P§”z+ E@G 0 (30)
d 1 ‘e‘_‘,f IR R )
d’: = ( ';Gg)'}’ WP +Q o o B (81)
where - Wl ‘ \
' Ry A %
P 0T T

Since the Eqns (28) to (31) are of the same form,: only one of them is sufﬁcxent to predlct the nature of the
sonic waves.

Then to discuss the nature of the sonic wa&es, we in'tegrate' (28). To avoid complications in analysis, we
assume here that the sonic surface is movmg with a velocity large enoughin companson to the  Alfven velocxty

@3

This permits us to neglect the last termin (28) whlch now takes the form A
T Xe_pr=o L (32)
On integration, this yields S
1 1 - -~ — ,' — e y x /_‘—‘ OS .
T exp (cs) A — -::—‘ exp (¢s) Af exp (o) ds (33)
: 0 SR
where - k 7 7
v : - S 1tB vep
c=(1+B A~B) A= { 1——~2.Qoé"-i—Kosz}fGa B

2 being the mean curvature of the wave front and adcordmg to ‘Lanes, we get

2, —K,s
1_2 008+K082~

To have a clear physical situation we consider the particular case of a plane wave. In this case the mean
curvature is zero so that 2 = Q; = 0 and Ky = 0. Then the Eqn. (33) reduces to the form

W 1
~ Texp(n) —dy {exp () — 1} - (3

Q=

?

where
4 »
¥ = 2;:"]:'05:—40:“;" Co
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The parameter ¥ is the measure of the! strength of the shock discontinuity during the propagation; = is a
variable parameter and A4¢ depends on {, and the magnetic pressmie number. The Eqn. (34) suggests
that for a compressive wave of order one, { grows continuously as ‘

1, el
me— ST e T 3{.
§-> — o > Lol — Pe (35)
provided’ -, "
[ &o | > = | ‘ (36)

for a real value of 5. In such a case, continuity across & (¢) breaks down and sonic waves terminate into a
shock wave in time ¢, given by

_ ‘)’eICO ‘-] . ' “
=ht lg"[ EAN A= 57

From this relation we conclude that in the presence of a magnefuc field, sonic waves rapidly terminate into a
shock wave. It may be remarked that inequality (36) holds for the non-magnetic case as well:

CONCLUSION

The propagat'on of sonic wavesin an 1dea] dissociating gas of nghthxll’s model has been discussed under
a magnetic field. It has been shown that the magnetic field changes the velocity of small disturbances that now
travel with a velocny which is a combination of the effective veloeity of sound, Alfven velocity and a velocity
due to finite couduct1v1ty of the medium. It has been also shown that Alfven velocity depends on the degree
of dissociation and sonic waves rapidly terminate into a shock wave. :
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