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Steady flow of a micropolar incompressible fluid between two parallel. porous plates y = 0 and y = & is studied
by perturbation method. Injection velocity at y==0 is ¥, and at y=nh the suction velocity is ¥,. The behaviour of the ~
- various flow variables is investigated for varying values of the micropolarity parameter K/u. It is observed that the
longitudinal velocity is more at the lower plate and less at the upper plate than in the non-polar case. It is also
observed the wall friction is more at both plates when compared to the non-polar case. . ’

The study of micropolar fluid was initiated by Eringen!. These fluids exhibit certain microscopic effects,
which arise from the local structure and micromotion of fluid elements. The fluids experience couple stresses
and the stress tensor has antisymmetric components. An independent kinematic vector called micro-rota--
tion is introduced and one has to solve two symultaneous equations in the velocity vector and the micro-
‘rotation vector. Some problems of practical interest were investigated by Lakshmana Rao% 3¢, In the
present paper the study of such a fluid between two parallel porous platesisinvestigated. Inthe cartesian co-
ordinate system (x, p, z) the main flow is in the z-direction bounded by porous plates y = 0 and y=nh.
The injection velocity at y==01s V1 and at y=h the suction velocity is ¥;. The problem is solved by the

method of parameter perturbation, the parameter being the suction Reynolds number R, — ”J‘Zz The
: | "

behaviour of various flow variables is discussed for different values of the micropolaritj' parameter —Ig.

EQUATIONS OF MOTION

The governing equations in the absence of body force and body couple are!

e + -
dyq ) - 0 o
pE{ :—grad‘P,-{—Kcurl v +(p+K)V q , 1)
d;ﬁ e - - -> ) ’ ->
p] —d—t—=-—2K-v+KcurIq—-—'ycurlcurlv ‘{"(M:{*ﬁ—!—‘y)grad diVV R (2)
and the equation of continuity ' v
. , -
div g =0 (3)

- .

In the above equations g, v are respectively the velocity and micro-rotation vectors and P is the
fluid pressure. p and j arethe fluid densityand microgyration parameter, and o, 8,y, K, and p are
viscosity coefficients which are taken to be constant in the present investigation. Thestress tensor t;; and

the couple stress tensor m;; are given by? , ,
tij = —P8ij + (2n + K) ¢j + Kejjom (w0m —vm). . @,

mij = ayg,g 8ij + Priyy + vis : 0)

’ T - . - . .
where « is the vorticity vector. §;; is the Kronecker delta and «;;y, is the alternating symbol.
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In the present case the main flow is in Q-direction bounded by the plates y=0and y=h. All the flow
variables are independent of the coordinate x. WithAZ; (0, v, u) the vorticity vector has only the
x-component and therefore we take : = (;, where z{s‘ the unit véctor in the x-diection?. With this we
observe that div j =0 and the last term in Eq. (2y vanishes. With » = —% , the boundary conditions “

are the usual adherence condition. R .
0 (2,0)—u(n1)=0 |

r ©
€(2,0)=C(z21)=0 J - :
and for ¥, we have o ' L ‘ -
Now following Terill & Shrestha7 we take the stream functlon ¥ ( z, 9 ) in the form : ‘ ‘
rO 2 _ .. . Coe
: js’l(z,n)z(—a—— 2h)f(f1)' R - (8)
where [J is the entrance yelbcity and ap = 1 — ——II;I— " 'The Eq. 3)is automatlcally satlsﬁed and the
vglocity components « and.} are given by 2,,[ .
194 g s Co
w=(2=vg)r @ |
’ B IR e OR
| V="of@ J
we also take o I :
0=(,m2 Vz,ﬂ)‘(),ﬁ o .10
where f () and g(n) are functions of 5 to be determined. The equations of motion (1) now give _
2
(1) | 2ef = Basag | =merr = 8.5 (145) )
: K e 17 | aP : ks d2 - -
(14 D= }f‘rRZ{f — } 2 #(0—V,07) 1z
eliminating the pressure between the above two equations, we have- ’ .
K\ { , " K
(s fm{ g a4 ) a3
where M 1saconstanttobedeterm1ned SR
Eq. (2) using (10) gives - . ,
K n l l
(1+5) (s + 87— 259) =R (3 —) 19
In theabove equatlons €3} to (19 dashes denote dlﬁ'erentlatlon w1threspect to 7 and
bV o ph2'5‘5_ ) ‘K
L SO . Sy
AT T T (R ( (v +E)
8 )
e LA
In terms of f(x) and 9(n) the boundary condmons (6) to (7) glve
SO@O=rMH=0 9(0)—9(1) 0
as

ey

f0O =1 — a2 f(l)
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The complete solution of the problem congists of solvmg (13 to (14) a.long thh (15) Eg "(12) wﬂl then
give the pressure gradlent in the z-dlrecnon. :

PERTURBATION SOLUTION EOR SMALL &~

We take the following series solutions fof fir), 9()-and the constant M

o f("l ZRz'frﬁI) gin) = z Ry g (n ] ‘ S

S ()|

- M= ZM,R,A

~

r=0"

with the boundary conditions ’ |
RO =5 =0, g,@ =gpM=0 rxz03y° - |
fo©®) = -1—oaz, f)=1.and . = ; S .o 19
rO=f0=0  r>1 ;o R
Substltutmg (16) in (13) and (14) and equatmg thc varlous coeﬂ‘lclents of powers of Ry, we get

Zero Order Approximation T . o 5
L & (5—2) . 8 - ‘
fO + 83 T f0 “—'A 2 g;' M, : . ‘ -M‘ - ‘:_"; . (18)
L 2290 =S fo’r + S22 S0 - L
S'©) =/o"(1) =0, 9o(0) = 0 = 90(1) fo(O) =1—a, fo(l) =1 (20)

First Order Approximation

A+ “SZOS;S:z_)ff'; ,S“~ M1 { {fo'z”‘fofo ) +J (fo!lo ~— gofo’ H—
I / - B
o /::;,:’L o - +fofo’” —fo" }/( 1+ ;;) (21)
__»-,//'/’ e ~ ,
28,94 —%Safl + 8 fr———x JSQK (fogu + gofo (fo fo" — foft") ‘ | (22)
(-5 g
with RO =1 =0, 60 =g =0, O =HD=0 (3

from (18) to (23), we find

. , ) M S B e S C,,e""‘f)
fo= By Dor o 4ot + 3{2""2 =

where .

?=

(52’—<s;,.,)‘sg L

(7]



" Der. Sct. J., VoL. 30, Jury 1980
fi = [ EL+ Dly+ A2 4 Barpls + Cop{12 4+ DATR0 + B430 +
o F4 q1l42 4+ emn { mt G4 — 23 HA -+ 6m® N4 — 24m D4 + 120 P4 } /me +
my o my :
+ e {m3H4-—-4m2.N4—{— 18mD4—96P4}/ sS4 ogte {m2N4-—~
— 6m D4 -+ 36P4'}/m4 LB { m D4—-8P4}/ m e Pim? +
+e "{ m Q4 + 2 R4 +6m2 $4 + 24m T4 + 120 U4}/m° e e
: {.m3R4 - dm? 54 + 18m T4 + 96 U4}/ mot e {m2s4 +
5 —my ' —mn
+ 6m T4 + 36 U4}/m4 Tmde {mT4 1 8U4 }/m3 Lpe e
. 2 _k_ -
o) ] () | o
" The expressions of the constants are omitted 3 since they are very lengthy.

LONGITUDINAL VELOCITY FIELD

From (9) the ax1al veloclty in the non-dimensional form is*

u 1 R , L \

) =g = (-7 i) (s +sz_1+"') (24
where R2=-lbg" ‘
: B

I ===~ NEWTONIAN
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Fig. l—Longltudmal velocity profile <u>.

In the Fig. 1 the longltudmal velocity profiles for
Rz-—08 ag =05, R =200, andSa—-01875
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for different values of ——1—{— are drawn In the present problem we have assumed that the chro-rotatlon vector

is zero on both the plates n=0and 5= 1. Therefore the only physmal quantity that effects the flow in
‘present case in addition to the ones that are there in the classical case is the couple stress. It is kinown that
for one-dimensional flows between the solid boundaries the effect of the couple stress is to decrease the
longitudinal velocity in the entire flow regions. But in the present case the couple stress increases the velo-'
city at the lower plate through which the fluid is- bemg injected in the flow region.. At the upper plate the
fluid is being sucked out and here the couple stress decreases the velocity. This is true whether the longitu-
dinal velocity is positive, near the entry or negatlve far away from the entry. We also observe from the

K
figure that the maximum value of <u> moves towards the lower plate as — mcreases
3

PRESSURE' FIELD -{; .

The pressure drop in the y and z dlrectxons in the non- d1mens1onal form are
{P(z, P\z, ) }h Rzk (2—8,) 7 - Mo'q" }
R +K){“A°. SN

- {P0,n)—P(2,7) Mk Vg (z)l,_" lzl N

<P>—-— - HU — h( 0+R2M1) l—l— ){‘é—ﬁ B Tk - (26) -

Both are parabohc in their respectlve coordmates Graphs of <P, > a.re drawn in'Fig. 2 for different
1 = NEWTONIAN

(25)
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Fig. 2—Axial pressurediﬁ'erence <Pz;>.

4 ¢

K
values of P we observe that with increasing values of K . <P,> increases. It is positive near the entry
73

and for large values of % it becomes negative. Asinthe classwal cq._\segthe axial pressure gradient <P,>
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- does noj; depend on q <P,>. is more pronounced in the present than in the classma.l case'

. ‘,STRESSCOMPONENTS‘,
The non-vamshmg stress components in the non-dxmensmnal form are

T o

‘Ta_m =p=-1 o ‘ e
twh - _Ph . o
T = Gt T B | Loe
___E”W%+MH f(w+mnffv,- . (m
T (2 t.-}.faz)“.(””K)f'““g oo
| By B ,
o _:".]'I%’t;y“ ',_.f,,_,__ R R
T ”‘( N7 =L 31)
| Ty )T i

. Inthe present casethe boundanes bemg 7= 0 and ﬁ,_ 1 the coefﬁcxent of skin frlctlon CF on
these platesarc gtven by

The coefficient of %— in (30) is given by v ) .
‘ T[yzl ="‘ (f” - g) o o . ‘ (33)

0-3- "1 —m=— NEWTONIAN )

'y ‘ a o Fig. 3—Skin friction,
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The graph of the coefficient of skin friction Cr at the both platesis drawn in Fig. 3- for various values

K . R, . . .
— The coefficient of skin friction in the present case is more than that in the classical case® and

of
this is due to the antisymmetric pa;rt given by (33). On the boundaries g(n) is zero therefore Cr increases
because of the vorticity term f* (17). For any value of I{- skin friction is more at the upper plgte than at the
lower plate.

MICRO ROTATION VECTdR AND COUPLE STRESSES

In the present problem the micro-rotation vector has only the component. In the non-dimensional form
it is given by .

. Ch (1 Ry =z \ , ~
. <C> = = (E‘_—R— '—k—) (gO + R gl) 34
and the non-vanishing couple stresses in non-dimensional form are given by ’
’ ' m,
gy > = : U,N”% V= g . (3%
F ( T R
w = TRV, C - ()
. . K
Y, — u
K ( ap '’ )
p ’ My ) K : §_ :
22z _."7; 3 {‘ ,u 9 . (3%

In Fig. 4, the graph of <C> is drawn. It is seen that near the entrance, it is positive near the plate 5 = 0

0 S
2 T~

(CH>X10 T
Fig. 4—Non-dimensional micro-rotation <C>,

and negative at the upper plate n=1, the reverse happens for large values of" -%— In both cases it increases
in magnitude with increasing _l; The plate 7 is constant on which it'is zero moves towards the lower
v . .

o s . K
plate with increasing —.
ll.

1
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Theboundanes bcmg y= 0 andy =4,in tlnscasethe gra.ph of <m1,z> whlch act on these boundanes

/

— ]

—2 . e -1 ) PR R «,
Fxg S;th-d.imensionaj eoﬁble stress <myx>
. is drawn in Fig. 5. <my,> is posmve at both pla,te.s and is nega.uve in the mlddle region increasing in

K
magmtude with = The couple stress <mxz>1s mdependent of z and its behawour thh re»pect to nis

Just the reverse of <C> as_can be seen by comparing (34) and (36)«
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