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Steady flow of a micropolar incompressible fluid between two parallel porous plates y = 0 and y = h is studied 
by perturbation method. Injection velocity at y=O is V, and at y=h thesuction velocity is V,. The behaviour of the " - 

various flow var~ables is investigated for varying values of the micropolaritp parameter KIP. It is observed that the 
longitudinal velocity is more at the lower plate and less at the upper plate than in the non-polar case. It is also 
observed the wall friction is more at both plates when compared to the non-polar case. 

The study of micropolar fluid was initiated by Eringen*. These fluids exhibit certain microscopic effects, 
which arise from the local structure and micromotion of fluid elements. The fluids experience couple stresses 
and the stress tensor has antisymmetric components. An independent kinematic vector called rnicro-rota- 
tion is introduced and one has to solve two symultaneous equations in the velocity vector and the micro- 
rotation vector. Some problems of practical interest were investigated by Lakshmana Rae*, 3 4 .  In the 
present paper the study of such a fluid between two parallel porous platesis investigated. In the carte& co- 
ordinate system (x, y, z) the main flow is in the z-direction bounded by porous plates y = 0 and y=h. 
The injection velocity at y=O is Vi and at y=h the suction velocity is V2. The problem is solved by the 

method of parameter perturbatioir, the parameter being the suction Reynolds number R2 = phv2. - The 
P 

K behaviour of various flow variables is discussed for different values of the micropolarity parameter-. 
P 

E Q U A T I O N S  O F  M O T I O N  

The governing equations in the absence of body force and body couple are1 

-f 

and the equation of continuity 
3 

div q = 0 (3) 
+ + 

In the above equations q, v are respectively the velocity and micro-rotation vectors and p is the 
fluid pressure. p and j are the fluid density and microgyration parameter, and a, /I, y, K, and are 
viscosity coefficients which are taken to be constant in the present investigation. The stress tensor tii and 
the couple stress tensor mij are given by2 

-f 

where is the vorticity vector. Si is the Kronecker delta and ei jn is the alternating symbol. 
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In the present case the main flow is in z-direction bounded by the plates y=O and y=h. All the flow 
+ 

variables are independent of the coordinate x. With,c=lO, V ,  u )  the vorticity vector has only the 
-b 

x-component and therefore we take v = Ci, where i 6 the unit vector in the x-directionz. With this we 
r* Y 

observe that div v = 0  and the last term in Eq. (2) vanishes. With q = , the boundary conditions 

are the usual adherence condition. 
2 1 ( z , 0 ) = u ( z , 1 ) = 0  -7 

k 
C(z ,  0 )  = C( t, 1 )  = 0 J 

(6) 

and for V, we have 
v ( z , o ) , =  vl, v ( e ,  1 )  = V2 (7) 

Now following Terill & Shrestha7, we take the stream function 9 ( z, q ) in the form 

'V1 
where O is the entrance velocity and a2 = 1 - - The Eq. (3) is automatically satisfied and the 

7% 
velocity components u and V are given by 

- 

we also take j 

, where f (1) and g(1) are functions of q to be determined. The equations of motion (1) now give 

eliminating the pressure between the above two equationsf we have 

where M is a constant to be determined. 
Eq. ' (2) using (10) gives 

In theabove equations (1 1) to (14) dashes denote . differentiation . with respect to 1  and 
+ \ 

ph Va pi2  - . - K - s - --- R g =  -, P 8 1 = ( p + R ) & ,  2 - ( ~ f  K )  
Y 9 

8 3  = % a ( p  + g) and J = - A2 
\ 

In terms off($ and g(1) the boundary conditions (6) to (7) give 

f ' ( 0 ) = f t ( l ) = O  g(O)=g( l )  = O  
L 
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The complete solution of theproblem copdsts of solving (13 to (14)-gong with, (15). Eg.*(12) will then 
- - -- give the pressure gradient in th6 z-direciion, - - . . 

- - . -  
P~ERTURBATION SOLUTION F O R  S'MAC'L; & , 

We take the following series s~lutions fdr f(?)* g(7) and the constaat - - M . . 

.* - - (16) 

- -. . - -  

ik:" . 
r=O' - .- - - - -  . .  % ,  

with the boundary condihons - -  
- 

ft'(0) = frt(l) = 0 gr(0) = gr(l) = 0 r &o -7 
7. --- , 

fo(0) = 1 - a2 , f~(1) = 1 - and -k - 
I 

< (U)  

&(O)=h(l)=O r 2 - 1  - .  - J - 

Substituting (16) in (13) and (14) and equating the various coefficients of powers of R,, we get . . . , 
r ,  - 

Zero Order Approximation -; 
- - - - A --. - . / 

s* S2(Sn- -2  ) f . " ' = - 2 -  J& foV+. ,ya 
!, 

$8 ... - -  - (18) 
', : 

- 
First Order Approximation -. 

-, . * 
with .. f,'(O) =fill) = 0 , gl!O) = = 0 ,  fl(O) =fl(l) = 0 (23) - 
from (1 8) to (23), we find 
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( u4/m2 ) ] (&I 
' Tbe expressions of the constants are omitted; since they are very lengthy. 

L O N G I T U D I N A L  V E L O C I T Y  F I E L D  

From (9) the axial velocity in the non-dimensional form is' 
-* 

tl R2 2 
<u> - 8 = (i-il $) ( f O ' + ~ 2 P l +  ...) , (24 

P ~ D  where B2 = - 
. , P 

I ---- NEWTONIAN 

-&O - 3 0 - 2 0  -10 0 10 - 2 0  3 0  4 0  5 0  6 0  7 0  8 0  - - 
(u)x102 ' 3 

Fig. 1-Loyitudinal velocity profile <u>. 

the Fig. 1 the longitudinal velocity- profiles for 
Rz = 0.8, az = 0.5, R = 200, and $3 = 0.1875 
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- R 
, - - * -  .?. ' . - - *  

for different values of - are drawn. In the present problem we have assunied that the micro-rotation vector 
P 

is zero on both the plates 17 = 0 and 17 = 1. Therefore the'only physical quhtity that effects the flow in 
present case in addition to the ones that are there in the classical case is the couple stress. It is known that 
for one-dimensional flows between the solid boundaries the effect of the couple stress is to decrease the 
longitudinal velocity in the entire flow region6. But in the present case the couple stress increases thevelo-I 
city at the lower plate through whioh the fluid is being injected in the flow region. At the upper plate the 
fluid is being sucked out and here the couple stress decreases the velocity. This is true whether the longitu- 
dinal velocity is positive, near the entry or negative far away froin the entry. .We also observe from the 

K figure that the maximum value of <u> moves towards the lower plate as - increases. 
P - 

P R E S S U R E  F I E L D  . 

The pressure drop in the y and z directions in the non-dimensional fo r6  are 
{PtG 0) - Piz, 7)) fi R2h <P$> = * --L f l  

-- 
U ( P  4- K )  (26) 

<Pz> = 
- {P<02 q )  - P( ZY 7) ]h V, z 2 L  1 z  ' 

PO = o ~ (  ) ( )  - 1  - (26) 
Both are parabolic in their respective coordinates. Graphs of <P,> are drawn in'Fig. 2 for different 

values of 

Fig. 2-Axial pressuredifferace <pZ > . 
K K d 

- , we observe that with increasing values of -, <P,> &creases. 
P C1 \ *  

positive 

\ 

near the 

Z 
and for large values of i it becomas negative. As in:the classica1 '\aFe.tbc axial pressure gradient <Pz> 
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, dpcg qo$ depend on 9 b;:p4) is more pronounced in the present than in tbe classW c+ed, . q 

- - 1 

, STRESS C O M P O N E N T S  -.", ' . * 

. 11 

Tha goq-wishing stress eomb&e&s in the non-dimensional form are "- 1 Tm =- 3 -- -. (27) 

- tala -* A - 
P& *, - (2p +X)V2 4 2u + EF2 Sf' - .f 28) ' 

tnfi ' - - -- Pk " 

- f' - T@ = - ( ~ & + K ) V B  ( 2, + K)V, - (29) 

tyr 9 (30) 

%. . . . . 
I _. r -  (31 1 

~n tqe prcsengciasetbbbbom&i%ries being q = 0 aqd 4 c 1, tbo coedcient of skin friction CE on 
t&ese platesii$e given by - 

R 
(89) 

-* 
A - 

P& 
- +EfPa Sf' ,-,- L --, ,a 

- .f 28) ' 

m -  tn?-+ - Pk " - 
V \ T 7  - -- I 9.. I V\T7 - f' v9) 

In t4e prCSefcaastbbbbo~&i%ries being q = 0 aqd 4 C 1, tile coedcient of skin friction CE on 
t&ese platesii$e given by - 

, r ',a tt R 
(89) 

K - - 
The coetficient of - in (30) is given by 

. C1 
* - % 

I Tvtl = (f. -9 )  (33) , 

$6' Fig. 3-Skin friction, . 
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The graph of the coefficient of skin friction CF at the both plateeis drawn in Fig. 3 for various values 
.K 

of - . The coefficient of skin friction in the present case is more than that in the classical casea and 
P 

this is due to the antisymmetric part given by (33). On the boundaries ~ ( 7 )  is zero therefore CF increases 
K 

because of the vorticity term f" (7). For any value of - skin friction is more at the upper plate than at the 
P 

lower plate. 

M I C R O  R O T A T I O N  V E C T O R  A N D  C O U P L E  S T R E S S E S  

In the present problem the micro-rotation vector has only the component. In the non-dimensional form 
it is given by 

Ch <c> = - = R2 . 0 ($ 1 i7-) (90 + 4 91) 

and the non-vanishing couple stresses in non-dimensional form are given by 

In Fig. 4, the graph of <C> is drawn. It is seen that near the entrance, it is positive near the plate q = 0 

0 -. 

( c ) x 1 0 2  -- -- - 

Fig. 4-Non-dimensional micro-rotation <C>, 

2 and negative at the upper plate q= 1, the reverse happens for large values of - In both cases it increases 
h ' 

K 
in magnitude with increasing -. The plate q is constant on which it is zero moves towards the lower 

/ P 
K 

plate with increasing -, 
P 
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ihc boundaries b c i i  y = O and y = h, in this case the graph of < m , 3  which act' on thew boundaries 

< m y * )  

Fig. 5-NQ~-dimemiond oouple stress < ~ Y x > .  

. is drawn in Fig. 5. <ma,,> is positive at both ptgtes and is negative in the middle region increasing in 
K T 

-, 

magnitude with -. The couple stress <m&>ishdependent of z and its behaviour with respect to q is 
P 

juh the m e  of $62 as can bo secn by wmparing 64)  and (39% - 
* 
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