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The Newton Raphson technique has been employed to solve the set of non-linear equations governing the pro-
blem of flow and heat transfer from an enclosed rotating disc./The disc called rotor is subjected to uniform in-
jection while the top of the housing called stator, to an equal suction. The results for small Reynolds numbers
are found in good agreement to that obtained earlier by series solution. The radial and transverse velocity pro-
files for large Reynolds numbers have been plotted in the regions of no recirculation. The effect of net radial
inflow and outflow on temperature in the no-recirculation region has also been studied. The method is signi-
ficant in this respect that it yields satisfactory results for large Reynolds numbers.

The phenomenon arising out of the flow and heat transfer over an enclosed rotating disc is encounter-
ed in many engineering applications viz. air cooling of turbine discs, pedestal bearing with central feed-
ing of lubricant etc. The problem was first discussed by Soo! for viscous fluids. Later Sharma? suggested
an improvement over Sco’s formulation by considering the effects of circulation of the fluid (about the
axis of rotation) induced by the presence of the shroud. The treatment with Non-Newtonian fluids was
made by Sharma & Gupta® and Sharma & Sharmat. So00° also studied the heat transfer part of the
problem. A reappraisal of the heat transfer part was later made by Agarwal® and Sharma, Later
Agarwal & Upmanyu’ analysed the effects of uniform suction and injection on the flow and heat
transfer by taking the modified velocity profile as suggested by Sharma2. However, in all these discussions
the series solution valid for small Reynolds number have been considered. In the present paper we extend
the solution for large Reynolds number using Newton Raphson technique. For the sake of comparison, the
velocity and temperature functions for small Reynolds number have also been tabulated. Here it is worth
mentioning that Newton Raphson method, being fast converging, is capable of solving quite diflicult set
of non-linear equations to a good degree of accufacy in few iterations.

FORMULATI"ON OF THE PROBLEM -

In a cylmdtwal set of reference, the system consists of a disc called rotor of radlus n rotatmg ata cons-
tant-angular velocity in an incompressible viscous_fluid, and is situated at a constant distance’ Z, (< r1) from
a stationary disc called stator, forming the part of a coaxial cylindrical casing or housing. The rotor is sub-
jected to uniform injection W, and the stator to an equal suction. The symmetrical radial steady flow has
a small mass rate of net radial outﬂow m (m<.0 for anetradial inflow). The inlet conditions - are taken
as the simple radial source flow along the z-axis vstarnng from radius ro. The disc is kept at aconstant
temperature T, while that of the housmg issT1. The effect of injection and suction are governed by anon-
dimensional parameter A. . - <

Let u, v, w be the radial, transverse and axial velocity-components. The equations of continuity,
momentum and energy for steady, axisymmetric flow are :
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where 4, the viscous dissipation function is given by
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The boundary conditions are .
for velocity : '
u=0,v=r!2,w¥4;;oatz=0
u=v=Q,w=woatz=zo ) ’ (N
(—wo will denote the suction on the rotor and injection on the stator) |

for temperature : ; ,
‘ ' T'=Tyatz=0 . T

IT'=1T atz =g 8)
Intrbducing the ﬁon-dimensional variables
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where Pr (=ucy/K), Rz (= Q22,/K) are respectively Prandtl number and Reynolds number,
(i) Solution of equation of motion ' o
Following Agarwal & Upmanyu’, we take
' Ve BRm ME)
U= X{{(f)-l-“jz?—x‘— ' N |
— ¥ Rl L($ _ ' L
V‘—- XGE) + - =5 W=2H¢ , (14)

76



\

AGARWAL & BHARGAVA : Numerical Computation of Flow & Heat Transfer from an Enclosed Rotating Disc‘

where H, G, L- and M-‘are -dimensiondess functlons Also Rm ( = m[2mpQz)) and Rl (= 1/217on)
“are called as Reynolds number for net radial outflow and circulatory flow respectlvely (Rm is negative for
net radial inflow). The number m, denoting the small mass rate of radial outﬂow, is glven by ’
. ST L T %
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and m is a constant assoc1ated with induced mrcula.tory flaw due to the presence of the shroud. The square
of dimensionless radii, at which there is no-rectréitlation for the ase of net radial outﬂow (m > 0) and
net radial inflow (m < 0), respectively satisfy
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The boundary conditions-(6) can be.rewritten as” — -
. HQO) = H(1). =12, HQ0) = H(l) =0, . i L
. @0 =1, GO)=o, L(0)=L(1)=~0, ERR - (15)
M@©) =0, M(l)y=1, ~M'(0)‘=” ’(l) =07 -

~where A (= wy/2 on) is a non-dimensional parameter governmg the effects of 1nJectton and suction.
We take '

P=r@ ¥ ERO+P B x . qg

Usmg (14) and (16) and neglecting squares and higher powers of (Rm/Rz), (Rl/Rz) assumed small,
the equations (10)-(12), -after simplification, finally reduce to

Hiv = 2Rz (HH" + GG') ‘ : (17
Mt = 2 Rz (H' M" + H M" — G'L — GL'y (18)
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L" =2Rz(HL + M'G) = - \ 0)

o

' where L = (RI/Rm) L.

As a first step to the solution, the equations (17)- (20) are converted into correspondmg finite
difference equations by employing following finite difference scheme
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where ¢ stands for any of the functions G, H, L and M. Thus the finite difference equations correspondmg
to (17)-(20) are
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* The boundary conditions (15) can be wntteq,as
‘ Hz Hag—"A H23-~.H21, H1 Hs_

M -50, Mzz =1, M; = My; M21 = Mag | |

The present method consists of balctﬂatixig numerically the values G;, H ,-,'L,- and M; at the points
¢ = §;. The interval [0, 1]is divided into twenty equal parts with &= 0.05. The implicit scheme used

here with central difference formulae yields good accuracy. The system given by (22)-(25) represents 76

non-linear equations. We consider 76 functions Kiyj, Kz,,, Ks,, and K,,; as functions of 76 varlables

Gy, Gy oo eaieen Gaot, Hy vvviininn.. Hayy Mgo....0. . ..., Ma, "L';,‘..‘ ....... . To
start the iterative procedure, the first’ approxnnatmns to G;, H; s LJ and M 7 is prescrfbed Let the exact
~ solution be Gz .......... Goly Hg evevrnnnn. Hyl, Lgevvvvnnn.. Lal, My .......... M, then the
differences AG;, AHj, AL; and AM; are calculated from ‘
$=d+ Ndj, 3<j<2 ' (27)
where pcanbe G, H, Lor M. . ' eoee | \
Expanding Kj,;, i=1,........ 4 as Taylor series and neglectmg partlal denvatwes of order greater
than one, the dlﬁ'erences approx1mated by the f’ollowmg hncar system :
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~where D is the Jacobian matrix of order 76, A better approximation G,’H, L and M is"thus obtdined. Th
procedure is repeated till the desired accuracy is achieved. The value of H’ and M’ are also calculated

_ numerically and finally U, ¥ and W from(14) are iqﬁxhputed. The skin friction on the rotor and the stator
is given by ‘ , \ ' '

(Y ‘ g '
and C ' S ' -
s (36 ) | (259)

(ii) Solution of the energy gquation '

Substituting (15) into the energy equation (13), we have
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where : = : - - 7 : -
' Intro;iucing the dimenSion.less temperature S | . ,
T* =T,* + ¢ () + X* (§) ‘ ) (31)
and simplifying (30), we get ' o : '
) ! 1 » i : )
2 Rz (H$' — 6H?) + 2 Bn M"Y — @' L' + B" M*y = 5 (44 + ¢"). (82)
Re (—2H' ¢ + 2HY' — G2 — H™) = —;;r P o _ (33)

The boundary conditions (8) reduce to

at £ =10,¢ (§)=0,% (§) =0

(34)
The finite difference equations corresponding to (32) and (33) are
L (a2 b o b — e
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whxch are then solved again by the method .explained earlier:
The flux from the rotor and’ stator are respectively

| K 'aT*) o | |
. and ‘ ' : . S o

K o T
h= (5‘?);_—.1 . (37b)

NUMERICAL RESULTS

T he numerical calculatlons have been made for Rz2=0.4,40; Rm = 0.02, — 0 02, A
= 1. The values of velocity components

-—l,~1;‘an‘dﬁ"‘
U(+) =) (+) V(—-) ccon b
Uy, > UX1 5 jVX; o Vg given by .
o+ 1) Re R?
'Ux [UA/RM]MXI’U {IJA/ ]'}J\tXl, [I’J ]a.tX1
_ k V(; [VA/Rz] at Xl ; Rn =1 Rm T

and temperature for Rz =004, so obtamed have been compared with the results obtamed.earher by Agar-
wal & Upmanyu which are found in close agreement.

For Rz = 40, the radial and transverse velocity
profiles at maximum radii for no-recirculation for Rm = 0.02 and — 0.02 are plotted in Fig. (1) — (4)

Itis observed that the plane of maxima for radial velocity is pulled near the rotor for Rm>> 0 whileit shifts

towards the stator for Rm << 0. The transverse velocity decreases throughout the gap for all values of
Rm. The skin friction on the rotor and the stator has been calculated
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Fig. 1— Variation of radial velocity for maximum radii for _Fig. 2—Variation of radial velocjty for maximum radii (for
no-reclrculatlon (for Rm > 0). . Rm < 0) for no-recirculation.
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Fig. 3—Variation of transverse velocity for maximum

a 4 1 Q Fig.4—Variation of transverse velocity for maximum
radii (for Rm > 0) for no-recirculation.

radii (for Rm < 0) for no-recircylation,
The temperature for Pr = 20, Rz = 40 and X =1.0, is calculated and the results are shown in Fig. 5.
It can be concluded that in no-recirculation region, there is heating near the rotor which is more pronounc-

ed for Rm > 0 and A == 1; also cooling near the stator is increased for a negative Rm for the sa:ne A. The
“heat flux on the rotor and the stator has also been found out. o : -
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Fig. 5—Variation of (T*—T,*) for no-recirculation for Rz = 40, x = 1+0,
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