ELASTIC DEFORMATION OF AN ORTHOTROPIC SEMIINFINITE PLATE WITH STRAIGHT
BOUNDARY ASYMMETRIC WITH RESPECT TO THE ELASTIC AXES OF THE MATERIAL
UNDER UNIFORM PARTIAL LOADING
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The solution of the problem of an orthotropic semi-infinite plate with straight boundary agsymmetric with respect
totheelasticaxes of the materialhas been obtained under the assumption that a part of the boundary nearthe origin is
uniformly stressed and the rest is stress-free. The' use of Beltranli Cayley’s conformal mapping has been made.
In p&i‘blcula.r, the solittten hus been obtained for the pla,te with a concentratéd forde.

The plane problems of plates of orthotropxc materials have been treated so far by many investiga-
torst—3, =9, These problems mainly concern with the domains: symmetme with respect to the elastic axes
of ithe matenal In other cases, 'only few'works have been reported 'upto the present by Lekhnitzkiis, 9,
Morlguch15 Washizu®, Haguch14 Hayashi1®, 11 ete. Thisis mainly due to the difficulties encountered
in the treatment of the dliferentlal equatlons in the case of the plates of orthotroplc materials with s ymmetric
elastic axes. : :

On the other hand, the stress functions ,for the orthotropic -plate are usually given as the sum of two
harmonic functions in two functional planes. These problems can be reduced to simpler problems by the
use of proper conformal mapping. In order to find proper mapping functions, Beltrami Cayley’s method
can be used conveniently.

In this paper, problem has been solved by using Beltram1 Cayley’s conformal mapping. In partioular,
the solution for the plate with concentrated force has been deduced. :

STATEMENT OF THE PROBLEM

We consider the small deformation of a semi-infinite plate of orthotropic material with boundary line
inclined at an angle « to its elastic axis (x-axis). We ta,ke the é—wy coord.lna.tes as shown in Fig. 1. Then
the -y coordinates are expressed as

r=¢cosa,y = §sinn (1)
Tt is assumed that a part of the boundary (—a, a) is under the action of uniform pressure and the rest
is stress-free. Therefore the boundary conditions on the real axis n = 0 are given as
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I FUNDAMENTAL FORMULAE" "’

L e = Considering the orthogona,l coordinates z-y in an

T IC : orthotropic plate parallel to the elastic axes of the
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Fig. 1—x-y coordinates and £{— coordinates. = ipiY =12
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where f; are the stress funetions of Zj, dash denotes the differentiation with respect to zj, and p; are the real
or complex con]ugate constants concerning the orthotroplc property of the material as shown below

ol 1’1 Pt = w/Ev’Pf"l‘PZz'"(Ew/G )"2”:’ ‘

where E,, Ey are the modulii of elasticity in , y directions respeotlvely, G,y the modulus of rigidity, and
Vg the Poisson’s ratlo in z-direction.

The stress components in §—-17 directions inolined to‘the z—y axes at an angle « (Fig. 1) are given a

% — — Real [ z (i cosoc—l—zsmac)zf,” (zj ]

j=1,2
- e Real[ Z T {(1 + p) % — (1 —-‘Pj) 6““}213'”(%')]
S j=L2 L :
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S o : .
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T = I, [122(005 « + ¢p; sin oc’) (7 'coeoc + @'sjn «) fi" (zj)]
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where z means the summation for j=1and 2.
S v ]
SOLUTION oF ‘I'HE PROBLEM

Slnce the boundary line on the physwal p]a.ne is given by (1), 2 on the functional pIa.ne of the stress
‘function take values ‘

| zj=w¥ipjy#(cosm+?:pj8inoc)fj=,¢j(fj)- (6)
Therefore the tfansformefion function ¢; is deﬁned asl®
' zJ“¢J(§J) ff=éf+im | . (6)

It is obvious from (5) and (6) that the real axis n; =0 in the & — plane corresponds to the boundary line
in the. physmal plane a,nd the following holds - ,

fi=ty=t - SR

Consequently, rewriting the stress functions in terms of ¢, the problem is transformed mto a boundary
value problem referrmg to the real axis on the §; — plane. Hence the stress functions are given as

- (eom+zp,sm°=)f (%) f[a,(t ) + 1b; m] d ()
: ) , R R
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where the unknown constants.a;(t) and bj(t) ‘a‘,r_‘e given as . . R I
. . o L S R
a;(t) = ————— f [{a u) 8in o — Tgn(%) €OS o }sinut——
7R T R S .

~—-g0

—-—Pk{ oy (u) co8 1)) sinpc} cos ut ] du

b;(t) = m f [{ Ten(w) cos§’— o .(u\ sin a, } cos ut .—

— .
— { on (4} €08 o + 7y (u) sin “} sin ut ] du —
where j=1,2, k=1,2 j # k. 4
Wlth the bounda.ry condition (2), we ﬁnd that

’ 2PPL cosa smat . o -
e = T(pj—pp) ¢ o @
2P sina . 'sin et |
b; (¢ . 10
)= a( Pj—pr) .t o )

Hence the stress functlons obsained by putting the va,lues of aj(t) and b; (t) from (9) and (10) in (8) are o
follows : \ A o

e

Plpoosatiing) “-1(‘ )- IR

’ EXPRESSION FOR EDGE STRESSES

fj (z)) = 11(10; __pk) (COB0 u-i—’bp] sin oc) '

The stress components can be very ea,sﬂy evaluated Wlth the help of the formulae (4) a,nd the stress

functlons(ll) However, on the edge of the plate for £ > a, we have e e ’ e ‘

¢ [P =K tanh—1 (aft) |
S (12)
Oy =T =0 - -
. 2(p; 4 2) (Prpy—1)sina coso
where o o K = m(cos? o -+ py? sin?a ) (Ccos2e 4 pg? sinZer )
Y% _ -~
.084 ‘The value of K remains constant fora partwular plate
' ' but varies as «, the angle between the elastic axes
061 : -of the material and the physical boundary line, takes
04 different values. TFor an Oak plate with p, = 5/8,"
_ : : : P2 =49/61, the value of K for different values of o
021 - ' ’ has been given below and graphically represented in -
X o . i3 she Fig. 2.
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Fig. 2—XK vs a for an Oak plate Wrﬂff)l = 5/3 and - o S
Py = 49/51, '
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'HE P‘LATE‘ UN’D‘ER THR ACTIO‘N OF’

DEDUCTION.OF THE SOLUTION FOR T
NORMAL CONCENTRATED FORCE AT THE ORIGIN

- In case, the plate is under the action of a normal concentrabed F at the origin, the solution may be
very easily deduced from above by taking the 11m1t as ¢ > 0. While £ is given as ,

¢ 4

: L 2P = F,
o ) ? a-vO e
The- stress- functlons (11) reduce b
f’ (ZJ ) (pj—Pk)(COSOC—}—@'pjsina } @§J ’ (13) .

The function (13) is in agreements with th@@{giifgn by Haya.shi-lﬂ, The stress?cox‘pponents (12) reduce to

U:\]F‘:Kf*fw;v"n”:"f’n-—o S
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